Buscar

Aula 3 - Introdução à Resistência dos Materiais

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 34 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 34 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 34 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 1/34
 
 
 
 
 
 
 
 
 
INTRODUÇÃO À RESISTÊNCIA
DOS MATERIAIS
AULA 3
 
 
 
 
 
 
 
 
 
 
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 2/34
 
 
Profª Eimi Veridiane Suzuki
CONVERSA INICIAL
Seja bem-vindo a mais uma aula. Hoje veremos as deformações que ocorrem quando um corpo
está submetido a um carregamento axial.
TEMA 1 – PRINCÍPIO DE SAINT-VENANT E PRINCÍPIO DA
SUPERPOSIÇÃO
Antes de entrarmos na parte de carregamento axial, que será o assunto desta aula, vamos
conhecer dois princípios importantes quando se fala de carregamento axial, principalmente quando
temos carregamentos complicados.
1.1 PRINCÍPIO DE SAINT-VENANT
Temos dois pontos importantes no princípio de Saint-Venant: o primeiro diz que as tensões não
serão constantes quando olhamos na região perto da aplicação da carga, como mostra a Figura 1,
nos itens a e b, em que podemos ver que as seções próximas ao ponto de aplicação da carga (e ao
apoio) têm uma distribuição de tensão irregular; mas, quando nos afastamos desses pontos, a tensão
normal se torna constante em toda a seção.
Figura 1 – Princípio de Saint-Venant
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 3/34
Fonte: Hibbeler, 2015.
O outro ponto importante do princípio de Saint-Venant pode ser visto na Figura 1(c). O princípio
também diz que não importa se você tem uma força P aplicada, duas forças P/2 ou n forças P/n; a
distribuição das tensões nas seções será a mesma para todos, desde que as cargas sejam
estaticamente equivalentes e tenham sido aplicadas na mesma região.
1.2 PRINCÍPIO DA SUPERPOSIÇÃO
Pelo princípio da superposição, se nós tivermos um carregamento complicado, pode-se
determinar a tensão e o deslocamento resultante dividindo-se o carregamento em partes menos
complicadas e depois somando as resultantes.
Para podermos usar esse princípio, temos duas condições.
1. A carga e a tensão, ou o deslocamento, devem ter uma relação linear, como em: .
2. A carga não pode provocar mudanças grandes no formato do corpo. Temos um exemplo na
Figura 2, que carrega uma grande mudança no comprimento da viga, pois .
Figura 2 – Caso em que o princípio da superposição não pode ser aplicado
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 4/34
Fonte: Hibbeler, 2015.
TEMA 2 – CARREGAMENTO AXIAL
Anteriormente, aprendemos a equação da tensão:
Conhecemos também a equação para achar a deformação:
Se substituirmos a Lei de Hooke na equação da deformação, temos:
Mas sabemos que tensão significa força sobre área:
Usaremos a equação achada para quando a área de seção transversal (A) for constante e o
material for homogêneo; ou seja, com E constante e força interna P também constante na barra.
Caso a barra tenha segmentos com áreas diferentes, materiais diferentes nos segmentos ou
ainda várias forças internas, podemos usar esta equação:
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 5/34
2.1 EXEMPLOS
Exemplo 1: ambas as partes da barra ABC são feitas de um alumínio para o qual E = 70 GPa
(Beer et al., 2015). Sabendo que a intensidade de P é 4 kN, determine:
a. o valor de Q, de modo que o deslocamento em A seja zero; e
b. o deslocamento correspondente em B.
Solução – vamos organizar os dados:
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 6/34
Percebe-se que a área não é constante na barra toda, nem a força, então usaremos esta fórmula:
Vamos dividir a barra em trechos. No trecho AB E, A e P são constantes; no trecho BC também.
Então temos dois trechos: AB e BC.
Antes de voltarmos para a fórmula do deslocamento, vamos achar as forças internas resultantes
em cada trecho. Primeiro fazemos uma seção em cada trecho.
Seção entre A e B:
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 7/34
Utilizando a equação de equilíbrio de forças, temos:
Seção entre B e C:
Utilizando a equação de equilíbrio de forças, temos:
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 8/34
Calculamos as áreas:
(a) Agora voltamos à formula do deslocamento, calculando separadamente a parte de seção AB
e BC:
(b) Para achar o deslocamento do ponto B, vamos achar o referencial, que é o apoio C, com base
no referencial do deslocamento de A, não influenciando o deslocamento de B.
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 9/34
Portanto, o ponto B vai se deslocar 0,0728 mm no sentido negativo. Neste exemplo, foi usado
negativo para baixo.
Exemplo 2: a carga é sustentada pelos quatro cabos de aço inoxidável conectados aos
elementos rígidos AB e DC. Determine o ângulo de inclinação de cada elemento após a aplicação da
carga de 2,5 kN. A posição original dos elementos é horizontal, e cada cabo tem área de seção
transversal de 16 mm² (E = 193 GPa) (Hibbeler, 2015).
Solução: para achar o ângulo das barras, temos que descobrir o alongamento (δ) de cada cabo;
para isso, podemos usar a equação do deslocamento. A área (A) e o módulo de elasticidade (E) são
dados no enunciado; o comprimento dos cabos (L) está nas figuras, mas temos que achar a força
interna nos cabos.
Vamos começar achando a força interna dos cabos AH e BG:
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 10/34
Utilizando as equações de equilíbrio:
Agora, podemos achar a força interna dos cabos DE e CF:
Utilizando as equações de equilíbrio, temos:
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 11/34
Agora, vamos aplicar a equação do deslocamento para cada cabo:
Desenhando a barra DC, sem e com o deslocamento:
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 12/34
Tanto o ângulo, que chamaremos de β, quanto x, que será usado para descobrir o ângulo da
barra AB, podem ser achados com trigonometria:
Agora, vamos desenhar a barra AB sem e com o deslocamento:
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 13/34
Vamos achar o ângulo α com trigonometria.
TEMA 3 – ELEMENTO COM CARGA AXIAL ESTATICAMENTE
INDETERMINADO
Em alguns casos, apenas as equações de equilíbrio não são suficientes para achar as reações de
apoio. A Figura 3 (a) mostra o exemplo de um desses casos, chamados de estaticamente
indeterminados:
Figura 3 – Exemplo de elemento estaticamente indeterminado
Fonte: Gere; Goodno, 2017.
O diagrama do nosso exemplo pode ser visto na Figura 3(b). Com isso, e utilizando as equações
de equilíbrio, temos que:
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 14/34
Não é possível obter nenhuma outra equação com base nas equações de equilíbrio, mas, para
acharmos as reações, precisamos de duas equações. A segunda equação será obtida se analisarmos a
geometria do elemento e seus deslocamentos (δ).
No exemplo da Figura 3, a barra está entre dois apoios fixos, por isso não pode haver
deslocamentos; com isso, achamos a segunda equação:
3.1 EXEMPLOS
Exemplo 1: a coluna de concreto é reforçada com quatro hastes de aço, cada uma com diâmetro
de 18 mm. Determine a tensão no concreto e no aço se a coluna for submetida a uma carga axial de
800 kN. Eaço = 200 GPa; Ec = 25 GPa.
Solução – vamos organizar os dados:
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 15/34
A força P é negativa, pois está comprimindo.
Vamos achar as áreas:
Para achar as tensões, precisamos achar a força interna que o concreto e as quatro hastes de aço
fazem. A essas forças vamos atribuir um sentido, o oposto à força de 800 kN. Com as equações de
equilíbrio, achamos uma das equações:
A segunda equação nós achamos com geometria do elemento e seus deslocamentos.
Analisando o elemento, pode-se observar que o deslocamento do sistema será diferente de zero,
mas o deslocamento do concreto tem que ser igual ao deslocamento do aço, visto que estão unidos:
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/16/34
Como Lc = Laço:
Agora temos duas equações e duas incógnitas, portanto, podemos resolver o sistema:
Agora que já achamos as forças internas, podemos achar as tensões:
Exemplo 2: duas barras cilíndricas, uma de aço e outra de latão, são unidas em C e contidas por
apoios rígidos em A e E (Beer et al., 2015). Para o carregamento indicado na figura, e sabendo que
Eaço = 200 GPa e Elatão = 105 GPa, determine:
a. as reações em A e E; e
b. o deslocamento do ponto C.
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 17/34
Solução – vamos organizar os dados:
(a) Vamos achar as áreas:
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 18/34
Desenhando FA e FE:
Usando a equação de equilíbrio:
Agora vamos achar a força interna resultante para cada trecho: AB, BC, CD e DE.
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 19/34
O próximo passo é achar uma equação com geometria do elemento e seus deslocamentos.
Analisando o elemento, pode-se observar que o deslocamento do sistema será zero.
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 20/34
O deslocamento de A em relação a E será zero; portanto, o deslocamento de todos os trechos
somados deverá ser zero também.
Substituindo o valor na primeira equação encontrada:
(b) Para determinar o deslocamento do ponto C, vamos pegar um dos lados; nesse caso, o lado
AC:
TEMA 4 – TENSÃO TÉRMICA
Até agora vimos deformações nos corpos causadas pela aplicação de forças, mas existe outro
motivo para um corpo se deformar: a mudança de temperatura. Quando um corpo é aquecido, ele
tende a se expandir e, se sua temperatura for reduzida, ele tende a se contrair.
A Figura 4 mostra um corpo submetido a um aumento de temperatura; pode-se ver que ele
aumentou suas dimensões em todas as direções, e na figura temos como referência o ponto A.
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 21/34
Figura 4 – Corpo antes e após ser submetido a um aumento de temperatura
Fonte: Gere; Goodno, 2017.
Quando há uma mudança de temperatura, o corpo se expande ou se contrai segundo uma
relação linear, dada pela equação:
Sendo α o coeficiente linear de expansão térmica, que é uma propriedade do material e tem
como unidade 1/°C ou 1/K.
Quando temos um elemento estaticamente indeterminado que passa por uma mudança de
temperatura, usa-se o princípio da superposição para resolver o problema.
Consideremos uma barra estaticamente indeterminada, como a da Figura 5.
Figura 5 – Barra estaticamente indeterminada
Fonte: Beer et al., 2015.
Ela tem comprimento inicial L, como na Figura 6(a). Com o aumento da temperatura, o corpo vai
querer se expandir, mas, com os apoios fixos, ele não pode se expandir; portanto, o deslocamento
total deve ser zero.
Com o princípio da superposição, consideramos só a mudança de temperatura que vai querer se
expandir em δT, como na Figura 6(b), e separadamente consideramos que essa expansão será contida
pelo apoio que deve “empurrar” toda essa expansão de volta (δP), como na Figura 6(c).
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 22/34
Figura 6 – Princípio da superposição para resolver um problema de mudança de temperatura em
uma barra estaticamente indeterminada
Fonte: Beer et al., 2015.
Depois, somamos as duas resultantes das duas partes que consideramos inicialmente separadas.
4.1 EXEMPLOS
Exemplo 1: um tubo de latão (α = 20,9.10−6 /°C) é totalmente preso ao núcleo de aço (α =
11,7.10−6/°C). Determine o maior aumento permitido na temperatura e se a tensão no núcleo de aço
não deve exceder 55MPa .[1]
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 23/34
Solução – vamos organizar os dados:
Se quisermos uma tensão no aço de 55 MPa, vamos ver qual seria a força interna do aço.
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 24/34
O aumento da temperatura expande o aço e o latão ((δaço)T e (δlatão)T). Como estão grudadas,
elas precisam alongar a mesma medida, mas, como elas têm coeficientes de expansão térmica
diferentes, tendem a ter um alongamento diferente.
O aço tem um coeficiente de expansão térmica menor, portanto, tende a se alongar menos, mas
vai ser puxado a se alongar mais ainda pelo latão que tende a se alongar mais. Já o latão não vai
conseguir se alongar o quanto quiser, porque o aço, que se alonga menos, vai puxar na direção
contrária.
Exemplo 2: os dois segmentos de haste circular – um de alumínio e um de cobre – estão presos
às paredes rígidas de tal modo que há uma folga de 0,2 mm entre eles quando T1 = 15 °C (Hibbeler,
2015). Qual é a maior temperatura T2 exigida para apenas fechar a folga? Cada haste tem diâmetro
de 30  mm, αal = 24(10−6)/°C, Eal = 70 GPa, αcobre = 17(10−6)/°C, Ecobre = 126 GPa. Determine a
tensão normal média em cada haste se T2 = 95 °C.
Solução – vamos organizar os dados:
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 25/34
Se:
Vamos achar a área da seção transversal das hastes:
Para fechar a folga, o alongamento do cobre mais o alongamento do alumínio tem que ser igual
à folga; ou seja, 0,2 mm. Como não temos tensões, o alongamento será causado pela mudança da
temperatura.
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 26/34
Achando o quanto cada haste alongou, temos:
Agora vamos determinar a tensão normal média em cada haste se T2 = 95 °C. Se a temperatura
for maior que 45,7692  °C, isso significa que o vão foi fechado e as hastes continuam a tentar se
expandir, mas, como não há espaço, isso criará tensão.
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 27/34
Toda a deformação causada pela temperatura vai ser empurrada de volta pelos apoios: as forças
FA e FB.
Mas, como temos apenas FA e FB:
Substituindo os valores que já temos e considerando que a tensão se inicia com base em T =
45,7692 °𝐶:
Descobrindo a tensão:
TEMA 5 – CONCENTRAÇÃO DE TENSÃO
Algum tipo de descontinuidade pode estar presente no formato do elemento em alguns
elementos estruturais, e essa descontinuidade pode perturbar a distribuição de tensão da seção
transversal do corpo.
Essa descontinuidade pode ser um furo, um canto vivo, um chanfro, ranhuras ou qualquer outro
tipo de mudança na geometria do corpo, gerando uma concentração de tensão, ou seja, um
aumento da tensão nas áreas com a seção transversal reduzida.
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 28/34
Na Figura 7(a), pode-se ver um exemplo de descontinuidade, um furo circular em uma placa
retangular. A Figura 7(b) mostra a distribuição de tensão quando passamos uma seção transversal
por essa descontinuidade.
Figura 7 – Distribuição de tensão em seção transversal que passa por uma descontinuidade
Fonte: Gere; Goodno, 2017.
Pode-se calcular esse valor da tensão máxima com a fórmula:
Sendo K o fator de concentração de tensão e um valor tabelado que depende da geometria do
objeto, o fator de concentração de tensão pode ser achado na Figura 8 e na Figura 9. A tensão média
deve ser achada pela fórmula  , mas a área deve ser a da menor seção transversal do corpo.
Na Figura 7 essa área seria “c” multiplicado pela espessura.
Figura 8 – Fator de concentração de tensão para barra achatada com canto arredondado
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 29/34
Fonte: Hibbeler, 2015.
Figura 9 – Fator de concentração de tensão para placa com furo circular
Fonte: Hibbeler, 2015.
É importante estudar a concentração de tensão para evitar rachaduras em elementos de
materiais frágeis, principalmente se forem submetidos a comportamentos cíclicos. Uma pequena
mudança na geometria do corpo pode diminuir o valor de K e diminuir o risco do aparecimento de
trincas.
Na Figura 10(a), temos uma descontinuidade que gera um alto valor de K, ou seja, uma grande
tensão máxima; se for feita uma modificação na peça conformea Figura 10(b), o valor de K cai pela
metade, e cai ainda mais na Figura 10(c) e 10(d).
Figura 10 – Concentração de tensão para diferentes descontinuidades
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 30/34
Fonte: Hibbeler, 2015.
5.1 EXEMPLO
Exemplo 1: determine a força axial máxima P que pode ser aplicada à barra (Hibbeler, 2015). A
barra é feita de aço e tem tensão admissível σadm = 147 MPa.
Solução: vamos achar o valor da tensão máxima para as duas descontinuidades e compará-las.
Começando com a barra achatada com canto arredondado, vamos achar o valor de K; para isso,
vamos à curva mostrada na Figura 8, pois lá podemos observar que precisamos de r/h e w/h:
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 31/34
Com isso, voltamos para a curva e achamos, na parte de baixo, que r/h é 0,2. Assim, seguimos a
linha vertical do r/h = 0,2 até achar a curva de w/h = 1,5. No cruzamento da linha vertical com a
curva, vamos para a horizontal até achar o valor de K.
Portanto, K será aproximadamente 1,72.
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 32/34
Agora fazemos o mesmo para o furo circular:
Na curva da Figura 9, achamos em p valor de K.
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 33/34
Portanto, a força máxima P que pode ser aplicada à barra é 5,4 kN, pois ambas as
descontinuidades devem suportar essa carga P.
FINALIZANDO
Nesta aula, aprendemos sobre deformações em um corpo carregado axialmente. Iniciamos
vendo dois princípios: o princípio de Saint-Venant e o princípio da superposição. Depois
apresentamos a equação que relaciona deformação, força e módulo de elasticidade.
Nesta aula, também estudamos elementos estaticamente indeterminados, tensão térmica e
concentração de tensão, tudo para carregamentos axiais. Foram usados exemplos dos assuntos
apresentados, mas, para melhor fixar o conteúdo, faça mais exercícios dos assuntos desta aula.
REFERÊNCIAS
BEER, F. P. et al. Mecânica dos materiais. 7. ed. Porto Alegre: AMGH, 2015.
GERE, J. M.; GOODNO, B. J. Mecânica dos materiais. 8. ed. São Paulo: Cengage Learning, 2017.
HIBBELER, R. C. Resistência dos materiais. 7. ed. São Paulo: Pearson, 2015.
 Elaborado com base em Beer et al., 2015.[1]
20/11/2022 18:48 UNINTER
https://univirtus.uninter.com/ava/web/roa/ 34/34

Continue navegando