Buscar

Metodologia do Ensino de Matemática nos anos iniciais

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 31 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 31 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 31 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

METODOLOGIA E PRÁTICA DE
ENSINO DE MATEMÁTICA NOS
ANOS INICIAIS DO ENSINO
FUNDAMENTAL
CAPÍTULO 1 – MATEMÁTICA NOS ANOS
INICIAIS: QUAIS POLÍTICAS E TÉCNICAS
ENVOLVEM O ENSINO DE MATEMÁTICA?
Jonatha Daniel dos Santos
INICIAR
Introdução
Vamos começar este primeiro capítulo discorrendo sobre alguns documentos públicos
oficiais que estão articulados com o campo educacional. Esses documentos, entre outros,
estabelecem aplicações no conteúdo escolar, ou seja, o conhecimento sistematizado, que
chamamos de currículo escolar, bem como fornecem indicativos de como os conteúdos
podem ser apresentados aos discentes. 
Além disso, são expostas propostas para trabalhar com os componentes curriculares e como
o docente pode estabelecer uma ação pedagógica que venha ao encontro de um ensino e
aprendizagem em matemática de forma que possa colaborar com o processo do
desenvolvimento da inteligência das crianças inseridas nos anos inicias do ensino
fundamental. Então, como essas propostas são articuladas nesses documentos para ensino
de matemática?
Outra questão interessante desse capítulo reside na apresentação dos conceitos teóricos
formulados por Yves Chevallard e Gérald Vergnaud, ambos importantíssimos educadores
matemáticos que em suas teorias se propõem a ressignificar o ensino da matemática
trazendo outros olhares a partir de seus campos epistemológicos, sendo possível questionar:
como se aprende matemática?
Caminhando nesse sentido, estudaremos sobre técnica, tecnologia, campo conceitual,
compreensão dos números e dos conceitos das operações aritméticas, entre outros, sempre
pensado por meio de um contexto escolar que se alinha aos anos iniciais do ensino
fundamental.
Vamos lá? Acompanhe este capítulo com atenção!
1.1 Parâmetros Curriculares Nacionais
(PCN), Diretrizes Curriculares Nacionais
para o Ensino Fundamental de 9 (nove) anos
e Base Nacional Comum Curricular (BNCC)
As políticas públicas educacionais buscam construir elementos centrais que norteiam o
trabalho docente. No âmbito do Ensino Fundamental, pensando a partir dos anos iniciais, do
1º ao 5º ano, estas políticas públicas apresentam objetivos e tipos de sujeitos que serão
atendidos por meio desse nível escolar.  Não obstante, além de esboçar a idade das crianças
atendidas, estas políticas descrevem os critérios que os educadores/as devem atender no
âmbito de suas atividades docentes.
As questões centrais que incorporam as discussões presentes nessa sessão se apresentam
buscando compreender a proposta dos documentos oficiais, distinguir e compreender a
operacionalização do trabalho com os blocos temáticos e identificar as principais
características dessa ciência, de seus métodos, de suas ramificações e aplicações.
1.1.1 Os Parâmetros Curriculares Nacionais - PCN
A organização do Estado brasileiro em matéria educacional é regida pelas Diretrizes e Bases
da Educação Nacional (LDB), a Lei n. 9.394/96 (BRASIL, 1996). Tal lei dispõe sobre a Educação
Básica bem como a Educação Superior, e é por meio dela que outras leis e diretrizes vão
incorporando o cenário educacional brasileiro. É possível destacar, por exemplo, alguns
documentos oficiais como os Parâmetros Curriculares Nacionais (PCN) (BRASIL, 1997a), a
Resolução n. 07/2010, que fixa as Diretrizes Curriculares Nacionais para o Ensino
Fundamental de nove anos (DCNEF) (BRASIL, 2010), e a Base Nacional Comum Curricular
(BNCC) (BRASIL, 2018).
Os Parâmetros Curriculares Nacionais (PCN), propostos no ano de 1997, dividiam-se, naquele
momento, em um documento formatado por dois grupos: um de 1ª a 4ª série e outro para 5ª a
8ª série. Apesar de críticas, o documento foi um avanço para a educação brasileira,
principalmente quando se tornou um “[...] instrumento útil no apoio às discussões
pedagógicas em sua escola, na elaboração de projetos educativos, no planejamento das
aulas, na reflexão sobre a prática educativa e na análise do material didático” (PCN, 1997a, p.
4).
Para o grupo de 1ª a 4ª série, foi produzida uma coleção com dez volumes que envolvia desde
a Introdução aos PCN, passando por componentes curriculares como, por exemplo, Língua
Portuguesa, Matemática, Ciências Naturais, História, Geografia, Educação Física e Arte, até os
cadernos de Temas Transversais com Meio Ambiente, Saúde, Pluralidade Cultural e
Orientação Sexual.
Importante ressaltar que no período que o PCN (BRASIL, 1997) foi produzido ainda era
utilizada a nomenclatura “série”, como 1ª série, 2ª série e assim por diante. A partir do ano de
2006, de acordo com a Lei n. 11.274/2006 (BRASIL, 2006), foram estabelecidas as diretrizes e
bases da educação nacional, dispondo sobre a duração de nove anos para o Ensino
Fundamental, com matrícula obrigatória a partir dos seis anos de idade. A nomenclatura
alterada foi para “ano”, como 1º ano, 2º ano e assim por diante. Inclui, nessa mudança, o
aumento de um ano no Ensino Fundamental, que passou a ser até o 9º ano. O art. 5 dessa lei
previa que os Municípios, os Estados e o Distrito Federal teriam até 2010 para implementar a
obrigatoriedade para o Ensino Fundamental disposto no art. 3 desta mesma lei e a
abrangência da pré-escola de que trata o art. 2 também desta lei.
Os PCN (BRASIL, 1997) organizavam as séries em ciclos, totalizando quatro. O primeiro ciclo
refere-se a 1ª e 2ª série, enquanto que a 3ª e 4ª série são compreendidas no segundo ciclo.
Esses dois primeiros ciclos constituem a parte integrante dessa discussão. Já o terceiro ciclo
envolve a 5ª e 6ª série e o quarto ciclo a 7ª e 8ª série. Conforme o quadro a seguir, nota-se um
exemplo de desdobramento dos objetivos de matemática no primeiro ciclo: 
No volume 03 dos PCN (BRASIL, 1997b), que trata da matemática, o documento mostra-se
aberto a discussões historicamente desvinculadas a esse componente curricular, vinculando-
se a temas como a construção da cidadania e temas transversais como ética, orientação
sexual, meio ambiente, saúde, pluralidade cultural entre outros.
Aprofundando a discussão, o PCN (BRASIL, 1997) promove uma reflexão diante de alguns
cenários, por exemplo: o aluno e o saber matemático, o professor e o saber matemático, as
relações professor-aluno e aluno-aluno. Também dialoga com a resolução de problemas,
história da matemática, tecnologias da informação e jogos. São cenários que compõem e
podem compor o período de escolarização das crianças, e por meio delas pode haver
melhoras significativas no ensinar e no aprender matemática.
Isso quer dizer que trabalhar com história da matemática implica expor que a matemática
não é uma disciplina desconexa da realidade, pelo contrário, foi construída ao longo dos
séculos e por diversos povos no intuito de satisfazer necessidades de sobrevivência para os
seres humanos. Esse exemplo possibilita a compreensão de que tal documento trouxe
consigo avanços educacionais em sua formulação. Vamos conhecer um pouco mais sobre
esses blocos de conteúdo.
Conforme salienta o PCN (BRASIL, 1997) ao tratar do bloco “números e operações”, o objetivo
é apresentar e facilitar a compreensão sobre distintos significados das categorias numéricas e
suas operações, como os números naturais, números inteiros positivos e negativos, números
racionais (com representações fracionárias e decimais) e números irracionais.
Quadro 1 - Objetivos gerais do Ensino Fundamental em matemática para séries iniciais. Fonte: PCN, 1997b, p. 48.
Leia o artigo “Grandezas e medidas: surgimento histórico e contextualização curricular” (2013), de Simone Pozebon e
Anemari R. L. V. Lopes publicado no VI Congresso Internacional de Ensino de Matemática, realizado em Canoas, em
2013. O objetivo desse artigo é apresentar um breve apanhado sobre o surgimento dos conceitos que são focados na
pesquisa – grandezas e medidas – na história da humanidade, assim como realizar uma discussão a partir da sua
organização curricular e presença em documentos oficiais. Acesse: <https://goo.gl/2DGo7h (https://goo.gl/2DGo7h)>.
A aproximação com essas categorias e o envolvimento com suas operações, adição,
subtração,multiplicação, divisão, potenciação e radiciação, corrobora com a ampliação do
conceito de número. Para esse bloco de conteúdo, no primeiro ciclo, o objetivo é explorar os
significados das operações, em destaque a adição e a subtração. Já para o segundo ciclo “[...]
os recursos de cálculo são ampliados pelo fato de o aluno ter uma compreensão mais ampla
do sistema de numeração decimal, além de uma flexibilidade de pensamento para
construção do seu cálculo mental” (PCN, 1997b, p. 53).
Já o bloco “espaço e forma”, de acordo com o PCN (BRASIL, 1997b, p. 35), “[...] permite
compreender, descrever e representar, de forma organizada, o mundo em que vive”.
Concebe-se que esse bloco esteja articulado com o pensamento geométrico, enquanto um
campo fértil para se trabalhar com ocasiões cotidianas lançando mão de situações-
problemas. Ainda segundo os PCN (BRASIL, 1997b, p. 35), “[...] além disso, se esse trabalho for
feito a partir da exploração dos objetos do mundo físico, de obras de arte, pinturas, desenhos,
esculturas e artesanato, ele permitirá ao aluno estabelecer conexões entre a matemática e
outras áreas do conhecimento”.
Para esse bloco de conteúdo, no primeiro ciclo, a proposta consolida-se em compreender,
descrever e representar o mundo e os espaços sociais e escolares que fazem parte do
contexto dos estudantes, colaborando para localizarem-se no espaço e por ele se
movimentar, percebendo as formas e objetos que o compõe. Isso possibilita, então, a
construção de relações para a compreensão do espaço a sua volta. Já para o segundo ciclo,
“[...] o trabalho com espaço e forma centra-se, ainda, na realização de atividades
exploratórias do espaço [...] o trabalho com malhas e diagramas, a exploração de guias e
mapas pode constituir um recurso para a representação do espaço” (BRASIL, 1997b, p. 53).
VOCÊ QUER LER?
https://goo.gl/2DGo7h
O bloco de conteúdo “grandezas e medidas” tende a permitir melhores compreensões sobre
os conceitos apresentados no bloco “espaço e forma” e por apresentar similaridades com a
questão social é percebida como uma possibilidade de aproximar o contexto matemático
com o cotidiano. Para o primeiro ciclo, “[...] não é objetivo a formalização de sistemas de
medida, mas sim levar a criança a compreender o procedimento de medir, explorando para
isso tanto estratégias pessoais quanto ao uso de alguns instrumentos, como balança, fita
métrica e recipientes de uso frequente” (BRASIL, 1997b, p. 45).
Trata-se de permitir que as crianças explorem instrumentos práticos que constituem objetos
necessários a determinadas profissões e que também possam ser utilizadas por seus
responsáveis em atividades domésticas. Para o segundo ciclo, a proposta é compreender os
processos de medição, apresentar as unidades de medidas (metro, centímetro, grama,
quilograma etc.) e o trabalho com conversões sempre atrelado ao contexto prático, como
transformar quilômetro em metro e assim por diante. Ainda nesse bloco de conteúdo,
seguindo as orientações dos PCN (BRASIL, 1997b), é válido trabalhar com o sistema decimal
de medida, com o sistema monetário e também com o sistema de numeração decimal.
Figura 1 - Explorando as medidas das crianças com uma possibilidade prática na ação pedagógica. Fonte: Yuganov
Konstantin, Shutterstock, 2018.
Outro bloco de conteúdo, o “tratamento da informação”, tem como proposta integrar estudos
“[...] relativos a noções de estatística, de probabilidade e de combinatória. Evidentemente, o
que se pretende não é o desenvolvimento de um trabalho baseado na definição de termos ou
de fórmulas envolvendo tais assuntos” (PCN, 1997b, p. 36). A ideia desse bloco é apresentar
os conceitos iniciais desses temas bem como possibilitar melhoras significativas em períodos
posteriores de estudos no seguimento escolar.  
No primeiro ciclo, conforme os PCN (BRASIL, 1997b), a proposta é estabelecer diálogos
investigativos e por meio dela estimular perguntas, construção de justificativas e estabelecer
relações entre objetos e informações. Logo, a finalidade não pressupõe apenas a leitura de
gráficos ou informações, mais que isso é preciso interpretar e inferir decisões frente ao que
vem sendo apresentado em sala de aula. Já o segundo ciclo tem como proposta desenvolver
um trabalho que leve em conta a coleta dos dados, organização e descrição desses dados,
para trabalhar com tabelas e gráficos. 
1.1.2 Diretrizes Curriculares Nacionais para o Ensino Fundamental de 9
(nove) anos –DCNEF 
Com a mudança do Ensino Fundamental para nove anos e a obrigatoriedade do ensino
gratuito dos quatro aos 17 anos de idade, demandas e necessidades de atualização dos
documentos públicos que constituem a educação escolar brasileira foram abertas. Assim, as
Diretrizes Curriculares Nacionais para o Ensino Fundamental de nove anos (DCNEF) (BRASIL,
2010b), homologada pelo Conselho Nacional de Educação/Câmara de Educação Básica, com
parecer CNE/CEB n. 11/2010 (BRASIL, 2010a) e Resolução n. 7/2010 (BRASIL, 2010b), atrelada
ao objeto da Lei n. 11.274/2006 (BRASIL, 2006), vem ao encontro da necessidade de atualizar
defasados documentos públicos que permeiam as políticas públicas educacionais. Os
princípios que regem essas políticas educativas e suas ações pedagógicas são éticos, políticos
e estéticos.
Conforme o Parecer CNE/CEB n. 11/2010 (BRASIL, 2010a, p. 110):
Os objetivos que a Educação Básica busca alcançar, quais sejam, propiciar o desenvolvimento do
educando, assegurar-lhe a formação comum indispensável para o exercício da cidadania e
fornecer-lhe os meios para que ele possa progredir no trabalho e em estudos posteriores,
segundo o artigo 22 da Lei n. 9.394/96 (LDB), bem como os objetivos específicos dessa etapa da
escolarização (artigo 32 da LDB), devem convergir para os princípios mais amplos que norteiam a
Nação brasileira. 
No Art. 15 da Resolução n. 7/2010 (BRASIL, 2010b), os componentes curriculares obrigatórios
do Ensino Fundamental serão assim organizados em relação às áreas de conhecimento:
I – Linguagens:
a) Língua Portuguesa;
b) Língua Materna, para populações indígenas;
c) Língua Estrangeira moderna;
d) Arte; e
e) Educação Física;
II – Matemática;
III – Ciências da Natureza;
IV – Ciências Humanas:
a) História;
b) Geografia;
V – Ensino Religioso.
Como em outros documentos, a Resolução n. 7/2010 (BRASIL, 2010b), expõe que o currículo
do Ensino Fundamental com nove anos exige um Projeto Político Pedagógico e intenciona
uma gestão democrática e participativa como garantia do direito à educação. Prega também
uma integração dos conhecimentos escolares no currículo para favorecer sua
contextualização e aproximar o processo educativo das experiências dos alunos. 
Importante ressaltar que conforme o art. 30 da referida Resolução (BRASIL, 2010b), os três
anos iniciais do Ensino Fundamental devem assegurar o acesso à alfabetização e ao
letramento; o desenvolvimento das diversas formas de expressão e a continuidade da
aprendizagem. A avaliação, conforme o art. 32 (BRASIL, 2010b), deve assumir um caráter
processual, formativo e participativo, e deve ser contínua, cumulativa e diagnóstica. 
1.1.3 Base Nacional Comum Curricular – BNCC
A Base Nacional Comum Curricular – BNCC (BRASIL, 2018, p. 30) é o documento mais recente
dos que vimos até o momento. É possível notar que se trata de um:
[...] documento de caráter normativo que define o conjunto orgânico e progressivo de
aprendizagens essenciais que todos os alunos devem desenvolver ao longo das etapas e
modalidades da Educação Básica, de modo a que tenham assegurados seus direitos de
aprendizagem e desenvolvimento, em conformidade com o que preceitua o Plano Nacional de
Educação - PNE. 
Nesse sentido, a BNCC (BNCC, 2018), de caráter normativo, estabelece em seu teor algumas
competências para os componentes curriculares bem como para os anos escolares e que
devem ser abordados nas escolas de Educação Básica brasileira. 
Nos PCN (BRASIL, 1997b) a estrutura do ensino de matemática é organizada em blocos de
conteúdo, sendo eles: Números e Operações,Espaço e Forma, Grandezas e Medidas e
Tratamento da Informação. Já no BNCC (BNCC, 2018), o termo utilizado é o de Unidades
Temáticas que são: Números, Álgebra, Geometria, Grandezas e Medidas e Probabilidade e
Estatística. Interessante ressaltar que para cada unidade temática há um objeto de
conhecimento bem como habilidades esperadas na construção do conhecimento.  
Assim como o BNCC (BRASIL, 2018), os PCN (BRASIL, 1997a; 1997b) e as Diretrizes Curriculares
Nacionais para o Ensino Fundamental de nove anos (BRASIL, 2010a; 2010b) são documentos
de leitura obrigatória para todos aqueles que ingressam na carreira docente ou que
trabalhem na área da Educação. Tal leitura torna-se importante para compreender as
questões legais que regem a educação brasileira bem como para verificar outras
possibilidades no intuito de colaborar com ações pedagógicas evidenciadas no espaço
escolar. 
1.2 Técnicas e tecnologia no trabalho com as
operações aritméticas nos anos iniciais do
Ensino Fundamental
As operações aritméticas nos anos iniciais no Ensino Fundamental, geralmente, são validadas
por meio das quatro operações elementares, ou seja, adição, subtração, multiplicação e
divisão. Com essas operações há um campo de estudo denominado Teoria Antropológica do
Didático (TAD), proposto por Yves Chevallard (1998), o qual tem a intenção de aprofundar a
discussão frente ao objeto de conhecimento, nesse caso, a matemática.
Dentro desse campo, nesse tópico o objetivo é estabelecer uma distinção entre técnica e
tecnologia na sistematização das aulas de matemática, compreender a implicação do
problema didático da sistematização e destacar as opções metodológicas sugeridas pela
proposta de Yves Chevallard.
1.2.1 O problema didático da sistematização
O conteúdo que estudamos nos espaços escolares, seja na educação básica, seja na
educação superior, é resultado de experiências seculares que tinham o objetivo de oferecer
respostas a questionamentos necessários para a vida humana. Em outras palavras, o ser
humano enquanto ser histórico e social sempre buscou ferramentas para sobrevivência
própria, bem como para seus entes. A matemática, por exemplo, é um dos campos científicos
mais antigos da humanidade, uma vez que seu uso atravessa gerações e distintos grupos
sociais. É possível citar dois grupos epistemológicos para entender como a matemática agia
em períodos anteriores: Empiristas e Racionalistas.
Esses dois grupos tiveram grande influência no que compete à produção do conhecimento
bem como no próprio campo da matemática. Os Empiristas defendiam que a essência do
conhecimento tem sua origem fora do indivíduo e que o mesmo vai interiorizando por meio
dos sentidos, uma experiência sensorial. Já o segundo, os Racionalistas, não negando o
primeiro, defendiam a ideia que a razão é mais poderosa que a experiência sensorial. 
Meneghetti e Bicudo (2003, p. 2) afirmam que o primeiro “[...] buscou fundamentar o saber
Matemático, exclusivamente, na intuição ou experiência” enquanto o segundo “buscou
fundamentar o saber Matemático, inteiramente, na razão”.  Do lado do Empirismo é possível
destacar Isaac Newton (1643-1727); John Locke (1621-1704); George Berkeley (1685-1753) e
David Hume (1711-1776). Já do lado do Racionalismo se destacaram René Descartes (1596-
1650); Gottfried Wilhelm Von Leibniz (1646-1716) e Immanuel Kant (1724-1804).
Nota-se então que o cenário da matemática não gira apenas no quesito cálculo. Muito mais
que isso, usava-se a matemática como uma possibilidade de se pensar o mundo e sobre o
mundo, produzindo questionamentos e resoluções para as mais variadas questões. Logo, a
experiência e a razão começam a fazer parte da produção matemática bem como sobre os
artefatos que são produzidos por meio do aprofundamento teórico que o ser humano
consegue alcançar.
Assim, essa linguagem universal começa a se expandir pelo mundo e trabalhos em prol de
uma sistematização escolar ganha força. A matemática qual temos hoje no currículo escolar
brasileiro e em outros sistemas escolares se deve a vários pensadores e pensadoras que
buscaram realizar uma sistematização de um vasto conhecimento para alguns fragmentos, a
fim de pudessem ser estudados nos espaços escolares. Essas fragmentações não apagaram a
extensão da matemática com a natureza e a possibilidade da mesma ser trabalhada com
outras temáticas.
Esse tratamento dado do campo científico para o campo escolar ocorre geralmente pelo
currículo escolar, ou seja, uma sistematização do que vai ser estudado e do que não será. A
partir disso, cabe ao docente, por meio dos conteúdos escolhidos, aplicá-los em sala bem
como produzir por meio desses conteúdos novos conhecimentos e novas habilidades que
colaborem para a compreensão e aprofundamento dos temas nos mais variados
componentes curriculares.
Partindo dessa compreensão inicial, cabe destacar alguns entendimentos que serão
abordados por meio da teoria de Yves Chevallard e, principalmente, de autores e autoras que
a corroboram. Chevallard (1998) apresenta uma teoria chamada Teoria Antropológica do
Didático (TAD), a qual propõe analisar uma das questões principais no trabalho docente:
como preparar suas aulas, organizar um objeto de estudo (matemático), colocar em prática e
fazê-lo funcionar em sala de aula.
De acordo com Chevallard (1998, p. 92), sua teorização da TAD deve “[...] ser encarada como
um desenvolvimento e uma articulação das noções cuja elaboração visa permitir pensar de
maneira unificada um grande número de fenômenos didáticos, que surgem no final de
múltiplas análises”. 
Yves Chevallard, nascido na França em 1946 é um escritor, matemático, investigador da transposição didática. É
professor na Universidade IUFM de Aix-Marseille, em Marsella, França. Desde 1971, publica artigos e textos em
diferentes revistas científicas colaborando para a produção científica no campo da didática, principalmente para a
área de matemática.
Dentro do campo da matemática há uma área denominada Educação Matemática. Essa área
busca entre outras coisas problematizar o ensino da matemática vigente no Brasil bem com
propor ideias que possam colaborar com a prática pedagógica do professor de matemática e
também para os docentes dos anos iniciais, conhecido também como professor polivalente. 
A teoria de Chevallard pode ser enquadrada nessa área.
Conforme Bitttar, Freitas e Pais (2013, p. 16), “[...] as práticas de sistematização de estruturas
matemáticas no contexto escolar incluem a utilização de certos registros de linguagem
pertinentes à dimensão educativa do saber escolar”. Os autores ainda comentam que
trabalhar com uma sistematização, ou seja, com fragmentos de um determinado
conhecimento científico transposto para o conhecimento acadêmico (saber a ser ensinado), o
discente desenvolve elementos por meio de uma linguagem objetiva.
Não se trata, então, de pensar exclusivamente sobre essa fragmentação, mas sim por meio
dela constituir outras formas de aprendizagem. Logo, não é interessante pensar na
sistematização escolar como algo isolado ou até mesmo reduzido apenas para o contexto do
saber matemático.
Nesse cenário, dois termos podem ser pensados para a sistematização das aulas de
matemática: técnica e tecnologia. Sobre essa questão, Chevallard, Bosch e Gascón (2001, p.
125) salientam que “[...] a existência de uma técnica supõe também a existência subjacente
VOCÊ O CONHECE?
de um discurso interpretativo e justificativo da técnica e de seu âmbito de aplicabilidade e
validade”. Chamaremos a esse discurso sobre a técnica de uma tecnologia (de tékhne, e logos,
discurso). 
O livro “A matemática em sala de aula: reflexões e propostas para os anos iniciais do ensino fundamental” (2013),
organizado por Kátia Stocco Smole, é composto por capítulos oriundos de pesquisas acadêmicas dos melhores
pesquisadores da educação matemática do Brasil. É possível destacar um capítulo, intitulado “Técnicas e
Tecnologias no trabalho com as operações aritméticas nos anos iniciais do ensino fundamental”, escrito por Marilena
Bittar, JoséLuiz M. de Freitas e Luiz Carlos Pais. Esta é uma boa leitura para compreender a teoria de Chevallard por
meio dos livros didáticos. 
Trabalhar com essas duas temáticas, técnicas e tecnologias requer do docente opções
metodológicas, ou seja, “[...] iniciar o estudo de um tema matemático com a sistematização
ou com uma atividade pontual pode indicar sinais de uma opção metodológica (BITTTAR;
FREITAS; PAIS, 2013, p. 17). Isso quer dizer que a prática pedagógica de qualquer docente está
embasada em uma ou mais concepções epistemológicas. São essas epistemologias que
direcionam o modo como o docente trata o conteúdo sistematizado, como concede o modelo
de ensinar, como verifica a aprendizagem, entre outros.
Em outras palavras trata-se da forma como o(a) professor(a) ensina e verifica o aprendizados
dos estudantes. Frente a esse tema da opção metodológica e das técnicas e tecnologias. 
Silva e Valente (2013, p. 13) destacam muito bem essa questão ao dizerem que a 
Aritmética, na sua forma escolar, sofreu transformações. Essas mudanças ao longo do tempo, se
forem apropriadas, sabidas pelo professor que ensina matemática, por certo, trarão
contribuições para a formação do professor no sentido de evocar rupturas no modo como esse
docente compreende a matemática nos anos iniciais.
Quando pensamos sobre a técnica, segundo Bitttar, Freitas e Pais (2013, p. 17): 
[...] essa tendência se reúnem as práticas que colocam em primeiro plano o ensino das
propriedades, teoremas, demonstrações, modelos, entre outros aspectos teóricos do saber
matemático. A análise dessas orientações metodológicas não envolve apenas uma questão
sequencial ou de ordem na apresentação das atividades matemáticas.  
VOCÊ QUER LER?
Já sobre a tecnologia, “[...] entendemos que se o enfoque principal atribuído pelo professor,
na condução das atividades escolares, estiver mais voltado para a construção das
justificativas ou das explicações referentes aos procedimentos matemáticos, trata-se de uma
prática tecnológica” (BITTTAR; FREITAS; PAIS, 2013, p.17).
Podemos resumir da seguinte forma: qualquer conceito precisa de tarefas a ser cumpridas, as
técnicas são as formas como as tarefas são cumpridas, em outras palavras, são as formas de
fazer. Já a tecnologia são os discursos que justificam, explicam e validam as técnicas. A essa
organização podemos chamar de organização praxeológica ou praxeologia.
De uma forma mais teórica, para que a praxeologia exista, Chevallard (1998) comenta que
deve existir a necessidade de ser realizado certo tipo de tarefa (T). Seus modos de fazer são
chamados de técnica (t) e a associação entre tarefa-técnica (T-t) define um saber fazer próprio
para esse tipo de tarefa. A tarefa-técnica (T-t) não age isoladamente e nem se sustenta por si
só, ou seja, a dupla (T-t) necessita de algo para constituir-se e, para isso, necessita de um
amparo tecnológico teórico (ou saber), formado por uma tecnologia ( ) e apresentar
sustentação à técnica (t) aplicada. Deste modo, a teoria ( ) irá justificar e esclarecer a
tecnologia ( ).
Bittar, Freitas e Pais (2013) dialogam a partir dessa teoria para discutir as quatro operações
básicas e que se apresentam mais intensas nos anos iniciais do Ensino Fundamental. Esse
momento escolar, do 1º ao 5º ano, é a base para o seguimento dos estudos não apenas em
matemática, mas em outras disciplinas.
Quando o assunto se refere às quatro operações básicas, a saber, adição, subtração,
multiplicação e divisão, muito já foi produzindo sobre essa temática dentro do campo da
educação matemática. Há, nos documentos oficiais, como nos PCN e na BNCC, uma ênfase a
essa temática e lá se apontam também distintas maneiras e concepções para se trabalhar em
sala de aula. 
Uma palavra-chave que prevalece nos estudos que buscam compreender sobre aquisição do
conhecimento é a palavra objeto. Vamos pensar em um exemplo. O número 6 pode ser
representado por situações diferentes: .  
Perceba que cada uma dessas representações oferece o mesmo resultado, ou seja, o número
6. Temos uma representação de uma fração, soma e multiplicação. Embora o resultado seja o
mesmo, cada um tem um sentido distinto. A expressão representa uma fração, enquanto
que a expressão representa uma soma. Ambas as expressões, embora tenham como
resultado o objeto “6”, os sentidos que apresentam são diferentes. 
VOCÊ SABIA?
De acordo com a teoria piagetiana, as crianças pequenas constroem um universo dentro de si mesmas e, por
isso, passam a inventar o conhecimento lógico-matemático. Isso significa afirmar que este conhecimento é
construído por cada criança a partir de dentro de si mesma através de sua interação dialética com o meio
ambiente que por si só é expandido quando incentivado.
Conforme Panizza (2006, p. 22), “[...] desde as primeiras aprendizagens as crianças utilizam
diversas representações de um mesmo objeto para fazer operações numéricas e o
reconhecem (pelo menos implicitamente) em cada uma delas”. Corroborando com isso,
Duval (2012) salienta que é importante o uso de diversos sistemas de representação quando
se trabalha com a aprendizagem matemática. Esse entendimento parte da ideia de que há,
como vimos, várias representações para um mesmo objeto.
Ao se tratar da adição, por exemplo, normalmente a posição adotada para trabalhar com esse
tema é por meio da apresentação de regras e algoritmos, muitas vezes sem uma articulação
com o contexto social, privando, então, os discentes, de compreensões efetivas sobre o real
valor da adição. Bittar, Freitas e Pais (2013, p. 20) salientam que não é aconselhado, nos anos
iniciais de escolarização, “[...] enfatizar os algoritmos e as propriedades das operações em
detrimento da compreensão do sentido destas”. Ainda conforme os autores, “[...] isso não
significa, no entanto, que as técnicas e os algoritmos devam estar ausentes da escola, mas
simplesmente não devem ocupar lugar central, ou totalitário, na aprendizagem das
operações aritméticas” (BITTAR; FREITAS; PAIS, 2013, p. 20).
Vamos aos dois exemplos a seguir:
O exemplo acima, também podendo ser chamado de tarefa, na teoria de Chevallard,
representa as operações aritméticas. Por outro lado, as técnicas são as formas de resolver as
questões. As técnicas ou “jeitos de fazer”, possuem graus de escolhas e também de
 Figura 2 -
Representação de técnicas para operações aritméticas. Fonte: BITTTAR, FREITAS e PAIS, 2013, p. 22.
indeterminação. Isso pode acontecer mesmo que, aparentemente, as definições matemáticas
pareçam estar claras e precisas. Assim, outras técnicas, outros jeitos de fazer, podem ser
utilizados para que a tarefa seja válida no processo de construção de conhecimento.
Para Bittar, Freitas e Pais (2013, p. 26):
Experiências mostram que o uso de material variado contribui para a aquisição dos conceitos,
portanto, todos os materiais disponíveis podem ser usados pelo professor, começando desde
tampas de garrafas e pedrinhas, passando pelo material dourado e chegando ao quadro valor de
lugar construído com materiais cotidianos (sapateira) e ao ábaco. 
Logo, a tarefa adição exige técnicas ou jeitos de fazer. Perceba que sempre existe mais que
uma maneira de se trabalhar com um tema na matemática, principalmente, nos anos iniciais,
uma vez que o lúdico nesse nível pode ser ricamente explorado de forma pedagógica e assim
contribuir com a construção do pensamento matemático. 
A prática tecnológica age, então, como uma possibilidade de construir justificativas ou
explicações referentes aos procedimentos matemáticos, ou seja, é um momento no qual
os(as) professores(as) podem tornar o ensino da matemática investigativo, produzindo um
Figura 3 - Ábaco é uma excelente ferramenta para o ensino de matemática. Fonte: Shutterstock, 2018.
processo dialógico-didático no intuito de apresentar a matemáticas por vários jeitos, tanto
pelo cálculo quanto por objetos manipuláveis.
Convém ressaltar que isso será possível quando os estudantes perceberem e
compreenderem as nuanças do sistema de numeração decimal, poissem esse entendimento
nenhuma metodologia dará resultados satisfatórios se não tiver sido apreendido (BITTTAR;
FREITAS; PAIS, 2013).
1.3 Sobre a técnica, a tecnologia e as quatro
operações
A praxeologia de Chevallard (1998) existe por meio das tarefas (T), seus modos de fazer, suas
técnicas (t) e a articulação entre tarefa-técnica (T-t), que define um saber fazer próprio para
esse tipo de tarefa. Sabe-se que não agem isoladamente e nem se sustentam por si só. A
técnica e a tecnologia constituem dois elementos importantes para compreender as quatro
operações nos anos iniciais.
Dessa forma, a proposta desse tópico é entender o estudo das diferentes organizações
contidas em livros didáticos com base teórica do conceito de praxeologia de Chevallard
(1998) e também perceber a articulação entre a técnica e a tecnologia para a compreensão
dos números e dos conceitos das operações aritméticas.
1.3.1 Articulação entre a técnica e a tecnologia para a compreensão dos
números e dos conceitos das operações aritméticas
Vimos no tópico anterior que a praxeologia, conceito de Chevallard (1998), para existir deve
possuir algumas tarefas (T) a serem realizadas. Há também a necessidade de modos de fazer,
ou seja, a técnica (t). Então, a associação entre tarefa-técnica (T-t) definirá um saber-fazer
próprio para esse tipo de tarefa.
Sabendo que a tarefa-técnica (T-t) não age isoladamente e por si só não se sustenta, há,
então, a necessidade de algo para constituir-se e, para isso, pode ser chamada de um amparo
tecnológico teórico (ou saber), constituído por uma tecnologia ( ) e uma sustentação à
técnica (t) aplicada. Logo, a teoria ( ) irá justificar e esclarecer a tecnologia ( ).
Quando Chevallard (1998) apresenta sua Teoria Antropológica do Didático (TAD), ele expõe
que todo saber está ligado a uma instituição, ou seja, o saber não existe no vácuo, isolado. 
Conforme esse autor, instituição pode ser entendida como um dispositivo social o qual
confere às pessoas que ocupam uma determinada posição, modos de fazer e de pensar
próprios (CHEVALLARD, 1992). Indo nessa compreensão, o livro didático pode ser
considerado uma instituição, tanto para alunos quanto para professores(as) que o utilizam.
O livro didático (LD) muitas vezes constitui o objeto principal dos docentes em suas práticas
escolares. Para os discentes é uma ferramenta de compreensão sobre um determinado
objeto bem como serve para assessorar atividades desenvolvidas no contexto da
escolarização. É claro que o LD não é a única e nem pode ser a última ferramenta para o
ensino e aprendizagem de um determinado componente curricular, principalmente para o
contexto da matemática.
Neste sentido, outras possibilidades devem fazer parte do rol dos docentes no intuito de
favorecer a construção do conhecimento. Mas, por ser um item presente no contexto escolar,
entregue sempre ao início do um novo ano letivo aos estudantes e com ele e por ele várias
atividades são realizadas em sala de aula, cabe então refletir mais sobre esse material e
pensar como o LD está estruturado epistemologicamente, principalmente, sobre qual
estrutura teórica ele é apresentado.
Os livros didáticos empregados por estudantes e docentes da educação básica são, na
maioria, aprovados pelo Programa Nacional do Livro Didático (PNLD), programa que analisa
e distribui livros didáticos para as escolas públicas.  De tal modo, os livros que as escolas
adotam e compram devem estar presentes no Guia de Livro Didático do PNLD.
Figura 4 - Livro didático faz parte da cultura e da memória visual de muitas gerações. Fonte: Shutterstock, 2018.
Conforme Bittar (2017, p. 03), “[...] uma análise de LD descortina ao pesquisador diversas
paisagens que podem ir desde o estudo da cultura escolar em uma dada época à
identificação de possíveis razões de dificuldades de aprendizagem e à elaboração de
sequências didáticas”.  Voltando à questão da instituição, cada uma tem um conjunto de
condições e restrições que devem ser respeitadas para que certo saber possa existir nesta
instituição.
Utilizando o exemplo de Bittar (2017), o conceito de “área”, por exemplo, está presente em
todos os níveis escolares da educação básica e até mesmo em vários cursos superiores.
Acontece que estudar “área” nos anos iniciais do Ensino Fundamental, não será o mesmo que
estudar este mesmo tema nos anos finais do Ensino Fundamental. Enquanto que nos anos
iniciais o tema pode ser explorado por ideia de pavimentação, nos anos finais, por outro lado,
apresenta-se mais formal, alinhado com a apresentação de fórmulas. É possível notar, então,
que para cada instituição é preciso haver adaptações do tema considerando as habilidades
que envolvam o desenvolvimento cognitivo dos discentes. Logo, as tarefas podem ser
articuladas por meio de diferentes técnicas.
O professor Saddo Ag Almouloud (2015, p. 4) contribui para essa discussão quando salienta
que:
[...] para uma determinada tarefa, geralmente, existe uma técnica ou um número limitado de
técnicas reconhecidas na instituição que problematizou essa tarefa, embora possam existir
técnicas alternativas em outras instituições. A maioria das tarefas institucionais torna-se rotineira
quando deixa de apresentar problemas em sua realização. Isso quer dizer que para produzir
técnicas é preciso que se tenha uma tarefa efetivamente problemática que estimule o
desenvolvimento de pelo menos, uma técnica para responder às questões colocadas pela tarefa.
As técnicas assim produzidas são então organizadas para que funcionem regularmente na
instituição.
Assim, a análise de dados por meio de livros didáticos possibilita entre outras coisas verificar
as transformações históricas que permeiam o campo educacional e proporciona verificar as
transformações adaptativas frente ao saber constituído.
Para Almouloud (2015, p. 9), baseado na Teoria Antropológica do Didático (TAD), a
implementação dessa abordagem para analisar livros didáticos é organizada frequentemente
como segue:
– Identificação dos tipos de tarefas: analisam-se as atividades propostas nas diferentes partes do
capítulo. Exemplos e atividades do curso (apresentado sob a forma de desafios ou exercícios
resolvidos) permitem identificar os tipos de tarefas importantes para a instituição.
– Identificação de técnicas: após a identificação dos tipos de tarefas, procede-se à caracterização
das técnicas que permitem cumprir essas tarefas apoiando-se nos exercícios resolvidos e/ou na
análise matemática das situações propostas;
– Identificação de tecnologias: construímos a tecnologia a partir da análise dos comentários dos
autores, do curso e eventualmente da análise do livro do professor ou de análise matemática de
situações propostas para consolidação da aprendizagem.
A análise dos LD abordados por essa teoria, geralmente, estuda uma questão específica sobre
um determinado tema do qual seja interesse do professor pesquisador. No trabalho de
Bitttar, Freitas e Pais (2013), por exemplo, os autores buscam aprofundar a discussão de
técnica e tecnologia frente às quatro operações básicas nos anos iniciais do Ensino
Fundamental em períodos distintos no cenário escolar brasileiro. De acordo com esses
autores, “[...] no trabalho com o ensino e a aprendizagem de números e operações, o grande
desafio seria encontrar um equilíbrio adequado entre fazer contas e justificar ou
compreender minimamente os procedimentos utilizados” (BITTTAR; FREITAS; PAIS, p. 19).
Nesse caso é compreender que os estudantes que chegam à escola já possuem
conhecimentos prévios, uma vez que em sua vida social já trabalhavam, mesmo que
inconscientemente, com essas operações ao dividirem brinquedos, ao brincarem, ao
conversarem, entre outras atividades.
Há então uma necessidade de vincular o contexto social antes da escolarização com o novo
momento, que é a entrada na escola. A entrada na escola inclui na vida das crianças novas
ações, como horário a ser seguido, regras a serem cumpridas, relações com outros sujeitos,
relação com o(s) docente(s), conhecimento de um universoamplo, que é o caso das
disciplinas, e, muitas vezes, é quando a criança estabelece o seu primeiro contato com os
livros didáticos, e é o LD livro que o acompanhará sua vida escolar até o fim da educação
básica.
Por isso, muitos(as) autores(as) se debruçam sobre essa modalidade de pesquisa e por meio
desses estudos é possível inferir que várias técnicas operatórias desaparecem e vão se
tornando obsoletas motivadas pelo surgimento de instrumentos e técnicas de cálculo mais
eficientes e práticos, diante de instrumentos eletrônicos e também pela renovação de
correntes epistemológicas, como a teorista, a tecnicista, a modernista e a construtivista.
Na plataforma Youtube há um canal chamado Educação Matemática, mantido pelo Programa de Pós-Graduação em
Educação Matemática, da Universidade Bandeirante de São Paulo (UNIBAN), e lá é possível encontrar diversos vídeos
interessantes relacionados ao campo da matemática. Um dos vídeos é oferecido pelo Prof. Dr. Gérald Vergnaud, no
qual o autor fala sobre o estudo das estruturas aditivas. Vale a pena conferir. O vídeo está disponível em:
<https://goo.gl/MTaYLp (https://goo.gl/MTaYLp)>. 
VOCÊ QUER VER?
https://goo.gl/MTaYLp
Importante ressaltar que o uso das quatro operações pode ser articulado com várias técnicas,
ou seja, com jeitos de fazer e o uso dos algoritmos é um desses jeitos, porém não deve ser o
único. Segundo Chevallard, Bosch e Gascón (2001, p. 124):
[...] embora os algoritmos sejam um tipo muito particular de técnica, é importante não confundir
ambas as noções. Somente em ocasiões excepcionais uma técnica matemática pode chegar a ser
sistematizada a tal ponto que sua aplicação esteja totalmente determinada e possa, portanto, ser
considerada um algoritmo.
A adição é considerada a principal das operações básicas e as outras se operacionalizam por
meio dela, estabelecendo um diálogo maior com a subtração, tanto é que existe uma teoria
denominada campo conceitual aditivo, de Vergnaud (1990). Nesse sentido, as duas devem ser
abordadas de forma coerente e conectada segundo os princípios escolares.
Bitttar, Freitas e Pais (2013) esboçam que trabalhar com essas operações exige uma
compreensão do valor posicional dos algarismos.  Normalmente, nos livros didáticos, a
adição é apresentada no primeiro momento sem reagrupamento e, em um segundo
momento, a adição com reagrupamento. O trabalho com adição de números com duas ou
mais ordens exige, muitas vezes, a retomada do valor posicional sobre as unidades, dezenas,
centenas e assim por diante. Dentro da TAD existe um conceito denominado objetos
ostensivos, que é o caso, por exemplo, do material dourado e do ábaco de pinos.
De acordo com Bosch e Chevallard (1999, p.10):
Nós falaremos de objeto ostensivo [...] para nos referirmos a todo objeto tendo uma natureza
sensível, uma certa materialidade, e que, por isso, adquire para o ser humano uma realidade
perceptível. Esse é o caso de um objeto material qualquer e, notadamente, e de objetos materiais
particulares que são os sons [...], os grafismos [...] e os gestos.
O trabalho com os materiais manipuláveis não pode ser apresentado descontextualizado da
temática estudada, pois se isso ocorrer os objetos ostensivos não cumprirão seu objetivo, ou
seja, facilitar a compreensão sobre os objetos não ostensivos, que conforme Bosch e
Chevallard (1999, p. 10):
[...] são então todos os “objetos” que, como as ideias, as intuições ou os conceitos, existem
institucionalmente – no sentido em que lhe atribuímos uma existência – sem, entretanto,
poderem ser vistos, ditos, escutados, percebidos ou mostrados por si mesmos: eles só podem ser
evocados ou invocados pela manipulação adequada de certos objetos ostensivos associados (uma
palavra, uma frase, um grafismo, uma escrita, um gesto ou um longo discurso).
Desta forma, podemos compreender objetos não ostensivos como conceitos, teoremas,
propriedades, modelos entre outros. 
1.4 Adição e a conexão com a Subtração
O campo conceitual e dentro dele o campo conceitual aditivo de Vergnaud (1990) nos ajuda a
repensarmos os conceitos que envolvem as operações da adição e da subtração,
principalmente no contexto dos anos iniciais do Ensino Fundamental, primeiro acesso aos
conhecimentos sistematizados e oferecidos na educação escolar. 
Assim, por meio do campo aditivo é possível estabelecer uma análise dos conteúdos
conceituais, procedimentais e atitudinais e propiciar vivências de situações-problemas das
operações de adição e subtração a partir da decomposição de um número em unidades,
dezenas, centenas e assim por diante. Para isso, compreender o sistema de numeração
decimal é válido para a efetivação de operações futuras, tornando-as parte da construção de
aprendizagem. 
1.4.1 Operações da adição e da subtração segundo o campo conceitual
aditivo proposto por Vergnaud
As quatro operações básicas foram estudadas por Vergnaud (1990) a partir do
desenvolvimento cognitivo ao desenvolver a Teoria dos Campos Conceituais. Gérard
Vergnaud, enquanto discípulo de Jean Piaget, trabalha especialmente sobre os conteúdos e o
contexto escolar e sua proposta consiste em analisar a formação e o funcionamento dos
conhecimentos. Vergnaud retoma, da teoria de Piaget, o conceito de esquema como “[...]
uma organização invariante da atividade para uma classe de situações dadas” (VERGNAUD,
2009, p. 21). Ainda de acordo com o autor, a teoria dos campos conceituais “[...] é uma teoria
cognitivista que visa a fornecer um quadro coerente e alguns princípios de base para o estudo
do desenvolvimento e da aprendizagem de competências complexas, notadamente das que
relevam das ciências e das técnicas” (VERGNAUD, 1990, p. 133). Seguindo por meio dessa
prerrogativa é possível compreender que o conhecimento se constitui e se desenvolve com o
tempo por meio de interações entre o sujeito e suas experiências.
O conhecimento então se desenvolve a partir do universo no qual o sujeito interage e o
desencadeamento de novas situações cognitivas parte de suportes formados anteriormente
em outros momentos. Assim, 
[...] o estudo do funcionamento cognitivo não pode, portanto, descartar questões relativas ao
desenvolvimento cognitivo. A teoria cognitiva proposta por Vergnaud contempla esse problema,
buscando compor, em um mesmo foco de análise, desenvolvimento e funcionamento cognitivo.
(FRANCHI, 2010, p. 192).
Vergnaud retoma os princípios de Piaget, porém adota como referência o conteúdo do
conhecimento e é por meio de situações e problemas para se resolver que um conceito
adquire sentido para o aprendiz. Moreira (2002, p. 1) escreve que Vergnaud reconhece a
importância da teoria de Piaget, “[...] destacando as idéias de adaptação, desequilibração e
reequilibração como pedras angulares para a investigação em didática das Ciências e da
Matemática.” Ainda de acordo com esse autor, um ganho importantíssimo estudado por
Piaget foi o conceito de esquema. Moreira (2002, p. 02) resume da seguinte forma:
[...] a teoria dos campos conceituais é uma teoria cognitivista neopiagetiana que pretende
oferecer um referencial mais frutífero do que o piagetiano ao estudo do desenvolvimento
cognitivo e da aprendizagem de competências complexas, particularmente aquelas implicadas
nas ciências e na técnica, levando em conta os próprios conteúdos do conhecimento e a análise
conceitual de seu domínio [...] os conceitos-chave da teoria dos campos conceituais são, além do
próprio conceito de campo conceitual, os conceitos de esquema (a grande herança piagetiana de
Vergnaud), situação, invariante operatório (teorema-em-ação ou conceito-em-ação), e a sua
concepção de conceito.
Um campo conceitual, no caso, o campo conceitual das estruturas aditivas, para ser
entendido é necessário determinar o que é “conceito” partindo da Teoria dos Campos
Conceituais. Para isso existir é preciso considerar três conjuntos:
S  – conjunto de situações que dão sentido ao conceito;
I   – conjunto de invariantes operatórios (objetos, propriedades e relações) que estruturam as
formas deorganização da atividade (esquemas) suscetíveis de serem evocados por essas
situações;
 Figura 5 - Adição e subtração
compõem o campo aditivo proposto por Vergnaud (1990). Fonte: Elaborado pelo autor, 2018.
R – conjunto das representações linguísticas e simbólicas (linguagem natural, gráficos e
diagramas, sentenças formais, etc.) [...] que permitem representar os conceitos e suas relações, e,
consequentemente, as situações e os esquemas que elas evocam (VERGNAUD, 2009, p. 29).
Para Vergnaud (2009), um conceito consiste na terna desses três conjuntos (S, I, R). Assim, o
conceito de adição, por exemplo, não pode ser resumido a certa definição do que é a
operação de adição. Logo, é oportuno que o processo de ensino esteja preocupado com as
situações relacionadas, de algum modo, aos conceitos acima destacados.
Um campo conceitual é, em primeiro lugar, um conjunto de situações. Para esse autor, “[...] o
conhecimento está organizado em campos conceituais, e o domínio, por parte do discente,
ocorre ao longo de um largo período de tempo, através de experiência, maturidade e
aprendizagem” (VERGNAUD, 2009, p. 40).
Nos PCN, a conexão do ensino entre adição e subtração baseia-se “[...] no fato de que elas
compõem uma mesma família, ou seja, [que] há estreitas conexões entre situações aditivas e
subtrativas” (BRASIL, 1997b, p. 21). Os PCN (BRASIL, 1997) apontam ainda que é possível
notar que a aplicação de processos aditivos ou subtrativos sejam aplicados em uma única
situação-problema.
Contudo, nem sempre esse trato foi dado a essa temática, segundo Nunes et al. (2009, p. 37):
Quanto às operações, o trabalho era apoiado nas técnicas operatórias e na simples memorização
de resultados. O conceito de operação e suas propriedades não eram enfatizados. Por exemplo, a
ideia de adição é ensinada de modo independente da ideia de subtração, embora a proposta
indique ser vantajoso memorizar as adições e as subtrações ao mesmo tempo.
Em grande parte, os problemas numéricos eram apresentados nos livros didáticos
exclusivamente no final das unidades, com o intuito de expô-los para a prática da aplicação
das técnicas operatórias e sem a preocupação de justificá-las. Logo, conforme Nunes et al.
(2009), a técnica operatória tinha a função de ser apresentada como objeto de estudo e não
como instrumento simbólico de resolução possível de ser empregado em distintas situações.
Ainda segundo Nunes et al. (2009), foi em meados da década de 1970, no cenário escolar
brasileiro, que houve um olhar voltado para as ideias envolvidas nos conceitos e
propriedades das operações. A teoria de Jean Piaget colabora com essas preocupações sobre
o que deve ser ensinado e como esse ensino pode colaborar com habilidades cognitivas e
construção do conhecimento.
Já na década de 1980, novos olhares foram lançados frente ao ensino e à aprendizagem dos
diversos conceitos e um deles foi sobre as operações matemáticas, que passaram então a
constituir espaços de discussões nos espaços acadêmicos bem como nos documentos
públicos brasileiros.
VOCÊ SABIA?
Se dois números de dois algarismos têm iguais os algarismos das dezenas e se os algarismos das unidades
somam 10, pode-se calcular seu produto instantaneamente. Pense  na multiplicação de 77.73. Você pode
responder prontamente que o resultado é 5.621. O “truque” é: multiplicar o algarismo das dezenas, 7, pelo seu
sucessor, 8, achando  56, cujos algarismos serão, nessa ordem, os algarismos dos milhares e das centenas  da
resposta. Acrescenta-se à direita de 56 o produto dos algarismos das unidades,  7 x 3 ou 21, obtendo-se 5.621
(MULLIGAN, 2004).
É possível destacar que o conceito de número para crianças não é algo tão organizado quanto
se pensa, principalmente para as que recém entraram na escola. Nesse momento, diversos
processos mentais estão em trabalhado em suas mentes e, por isso, é válido entendermos
que a inteligência, por ser um processo complexo, exige mais do que repetição e técnicas de
como fazer. Ela exige, certamente, a compreensão sobre o objeto estudado, o que Piaget
(1971) afirma em seus estudos.
Partindo desse entendimento, é importante ressaltar sobre os conteúdos conceituais,
procedimentais e atitudinais. Para isso vamos relembrar sobre as noções iniciais de número e
sobre unidades, dezenas, centenas e assim por diante.
A ordem e a quantidade indicada por um algarismo dependem da posição que ele ocupa no
número, por exemplo, podemos ter distintos números formados com os algarismos 1, 2, 3, 4,
entre eles o 1234, 4312, 1324, 1423, 2341, entre outras possibilidades. Essa ordem no contexto
da matemática é numerada da direita para a esquerda, conforme o quadro a seguir:
Deve ser obedecido o princípio de que 10 unidades formam uma unidade de ordem superior
e de que todo algarismo à esquerda representa uma unidade de ordem superior (10 vezes
maior). Por exemplo, no número 356 temos o 6 sendo unidade, o 5 sendo dezena e o 3 sendo
centena, podendo ser representado da seguinte forma: 300 + 50 + 6. Lembrando que a cada
10 unidades forma-se uma dezena e que a cada 10 dezenas forma-se uma centena. Assim
 Quadro 2 -
Classes das unidades. Fonte: Elaborado pelo autor, 2018.
segue a lógica na classe dos milhares, milhões, bilhões, trilhões e as outras classes. O quadro
anterior apresenta até a 5ª classe, mas é importante salientar que como os números são
infinitos, consequentemente, é possível ter infinitas classes.
A questão da ordem é importante para as separações das classes, por exemplo, no número
7777.  Da direita para esquerda, o algarismo 7, nesse exemplo, representa:
7 unidades;
7 dezenas;
7 centenas;
7 unidades de milhar.
Kamii e Joseph (1992) defendem a necessidade de que a criança, antes de operar com adição,
subtração, multiplicação e divisão, tenha uma real compreensão acerca do sistema de
numeração decimal, pois sem essa compreensão as operações serão meras técnicas de
repetição gerando, nesses casos, vários problemas com a matemática e até mesmo com
outras áreas que se utilizam desta disciplina em sua construção de aprendizagem.
Nesse sentido, enquanto futuros docentes do ensino de matemática para o público infantil é
necessário entender a importância em expor que todo número natural tem um sucessor (o
que vem imediatamente depois) e que todo número natural (exceto o 0) tem um antecessor
(que vem antes). Também é importante salientar que dois ou mais números naturais são
consecutivos quando cada um deles é sucessor do anterior.
Exemplo: O sucessor de 8 é 9.
O sucessor de 0 é 1.
O antecessor de 8 é 7.
O antecessor de 6 é 5.
Os algarismos 70, 71 e 72 são consecutivos.
A adição não precisa e não pode estar desconectada com as outras operações elementares.
Nesse sentido, Kamii e Joseph (1992) colaboram com essa discussão quando alertam que a
decomposição de um número em unidades, dezenas e centenas é muito útil para calcular o
resultado de uma adição.
Lembre-se que existem diversas maneiras de calcular com as operações elementares e com a
subtração não diferente. Todavia, a forma utilizada deve ser exposta sempre no intuito de
indicar o que está sendo feito e como está sendo feito, atribuindo significado às operações.
Para crianças que recém ingressaram na escola, por exemplo, é indicado o uso de materiais
concretos, como o “Material Dourado”, a fim de que possam construir lógicas nas operações
utilizando, principalmente, as unidades, as dezenas e as centenas. O material concreto, além
de ser importante para a ludicidade, traz objetos manipulativos pelos quais as crianças têm
uma noção real do que realmente estão fazendo com as “continhas” em seus cadernos.
Lembre-se de que adicionar e subtrair é muito mais do que “juntar” e “retirar”.
CASO
Isabel é uma professora que leciona para uma turma do terceiro ano do Ensino Fundamental. Isabel participou
de um curso de extensão oferecido por professores de uma universidade em sua cidade e um dos objetivos do
curso tinha a intenção de expor distintas práticas pedagógicas em sala de aula por meio da abordagemde
algumas teorias do conhecimento, principalmente, a Teoria Antropológica do Didático (TAD), proposta por Yves
Chevallard.
Figura 6 - Base numérica para o sistema de numeração decimal. Fonte: Raywoo, Shuttrstock, 2018.
Essa professora, durante sua graduação, já tinha mostrado interesse por assuntos dessa temática e agora, por
meio desse curso, decidiu ler mais sobre o tema. Ela pôde constatar que por meio desse campo ela poderia
analisar seu livro didático com outros olhares e com outras perspectivas.
Neste sentido, após um estudo sistemático, que compunha uma das etapas do curso de extensão, Isabel foi
percebendo como os conceitos de técnica e tecnologia se faziam presentes no contexto do livro didático e,
ainda, percebeu também que o livro havia sido constituído por uma ênfase no construtivismo. Foi então que ela
compreendeu que sua prática pedagógica alinhava-se com essa corrente epistemológica.
Essa docente, então, por meio do curso e das discussões realizadas com outros colegas de profissão e com os
professores formadores percebeu que poderia caminhar por outros caminhos em sua prática enquanto
docente, sempre no intuito de produzir um ensino reflexivo, dialógico e capaz de colaborar com o ensino de
matemática.
Sobre a subtração, o algoritmo mais conhecido para se efetuar a subtração é aquele em que
são feitas trocas. Conforme Bitttar; Freitas; Pais (2013), “a expressão ‘empresta um’, usada por
muitos professores, é inadequada, pois quando efetuamos a operação não há empréstimos e
sim decomposição de dezenas em unidades, centenas em dezenas e assim por diante”. Os
autores fornecem duas formas de efetuar uma subtração:
Veja a seguinte subtração: 425 – 116.
A primeira possibilidade é efetuar a subtração retirando por partes. Retira-se 100 de 425 e
temos 325 como resultado. Seguindo, tira-se 10 e 315 é o resultado. Finalmente devemos
retirar 6 unidades, depois é preciso trocar a dezena por dez unidades, no número 315, e então
retiramos as 6 unidades e ficamos com 309:
Na segunda possibilidade, efetuamos a subtração acrescentando partes. Para isso, partimos
do 116 até chegarmos a 425:
Perceba que o ensino das operações não precisa ser apenas de subtração ou adição. As duas
operações se complementam bem como, se alinhadas, podem melhor ser abordadas para o
ensino de matemática nos anos iniciais do Ensino Fundamental. 
Síntese
Concluímos este capítulo relativo ao conhecimento de alguns documentos legais que agem
sobre a educação brasileira e também vimos sobre as operações básicas e como elas podem
ser pensadas por meio das teorias dos campos aditivos de Gérard Vergnaud e da Teoria
Antropológica do Didático, de Yves Chevallard. 
Neste capítulo, você teve a oportunidade de:
compreender que os PCN apresentaram uma proposta inovadora para a educação
brasileira, dialogando no contexto da matemática com a resolução de problemas,
história da matemática, tecnologias da informação e jogo;
perceber que os PCN (1997b), em sua estrutura de conteúdo, é organizado em
blocos de conteúdo, sendo eles: Números e Operações, Espaço e Forma, Grandezas
e Medidas e Tratamento da Informação;
entender a sistematização de conteúdo como uma fragmentação de um
conhecimento produzido historicamente;
identificar que as técnicas intuem outros jeitos de fazer e ensinar matemática;
aprender que o campo conceitual aditivo envolve a adição e a subtração e que
ambas as operações devem caminhas juntas;
verificar que o BNCC (BRASIL, 2018) é um documento atual que estabelece regras a
serem cumpridas pelas escolas em âmbito nacional e que esse documento contém
informações interessantes sobre o trabalho com matemática.
Bibliografia
ALMOULOUD, S. A. Teoria Antropológica do Didático: metodologia de análise de materiais
didáticos. Revista Iberoamericana de Educação Matemática, n. 42, p. 9-34, 2015. Disponível
em: <https://goo.gl/cZDRpL (https://goo.gl/cZDRpL)>. Acesso em: 14/06/2018.
BOSCH, M., CHEVALLARD, Y. La sensibilité de l’activité mathématique aux ostensifs. Objet
d’étude et problématique. Recherche en Didactique des Mathématiques, n. 19, 1999.
Grenoble: La Pensée Sauvage, 1999.
BRASIL. Lei n. 9.394/96 – Lei de Diretrizes e Bases da Educação Nacional. Brasília, 1996.
Disponível em: <https://goo.gl/si6tqj (https://goo.gl/si6tqj)>. Acesso em: 01/06/2018.
______. Ministério da Educação. Parâmetros Curriculares Nacionais – PCN. Introdução.
Brasília, 1997a. v. 1. Disponível em: <https://goo.gl/fE2aE (https://goo.gl/fE2aE)>. Acesso em:
01/06/2018.
______. Ministério da Educação. Parâmetros Curriculares Nacionais – PCN. Matemática.
Brasília, 1997b. v. 3. Disponível em: <https://goo.gl/HLnWx8 (https://goo.gl/HLnWx8)>. Acesso
em: 01/06/2018.
______. Lei n. 11.274/2006.  Altera a redação dos arts. 29, 30, 32 e 87 da Lei n. 9.394/96.
Brasília, 2006. Disponível em: <https://goo.gl/V6Rtkb (https://goo.gl/V6Rtkb)>. Acesso em:
01/06/2018.
______. Ministério da Educação.  Parecer CNE/CEB n. 11/2010. Sobre as Diretrizes
Curriculares Nacionais para o Ensino Fundamental de 9 (nove) anos. Brasília, 2010a.
Disponível em: <https://goo.gl/DaVprr (https://goo.gl/DaVprr)>. Acesso em: 01/06/2018.
______. Ministério da Educação.  Resolução n. 7, de 14 de dezembro de 2010. Diretrizes
Curriculares Nacionais para o Ensino Fundamental de 9 (nove) anos (DCNEF). Brasília, 2010b.
Disponível em: <https://goo.gl/7NDTxf (https://goo.gl/7NDTxf)>. Acesso em: 01/06/2018.
______. Ministério da Educação. Base Nacional Comum Curricular - BNCC. Brasília, 2018.
Disponível em: <https://goo.gl/BDZE4q (https://goo.gl/BDZE4q)>. Acesso em: 01/06/2018.
BITTAR, M.; FREITAS, J. L. M.; PAIS, L. C. Técnicas e tecnologias no trabalho com as operações
aritméticas nos anos iniciais do ensino fundamental. In: SMOLE, K. S.; MUNIZ, C. A. (Org.).
Matemática em sala de aula: reflexões e propostas para os anos iniciais do ensino
fundamental. Porto alegre: Penso, 2013. p. 16- 47.
BITTAR, M. A Teoria Antropológica do Didático como ferramenta metodológica para análise de
livros didáticos. Zetetiké, Campinas, v. 25, n. 3, p. 364-387, 2017. Disponível em:
<https://goo.gl/AsUcFZ (https://goo.gl/AsUcFZ)>. Acesso em: 14/06/2018.
CHEVALLARD, Y. Concepts fondamentaux de la didactique: perspectives apportées par une
approche anthropologique. Recherches em Didactique dês Mathématiques, v. 12.1, 1992.
Grenoble: La Pensée Sauvage, 1992.
https://goo.gl/cZDRpL
https://goo.gl/si6tqj
https://goo.gl/fE2aE
https://goo.gl/HLnWx8
https://goo.gl/V6Rtkb
https://goo.gl/DaVprr
https://goo.gl/7NDTxf
https://goo.gl/BDZE4q
https://goo.gl/AsUcFZ
______. Analyse des pratiques enseignantes et didactique des mathematiques: L’approche
anthropologique. Recherches em Didactique dês Mathématiques, v. 19, n. 2, p. 221-266,
1998. Grenoble: La Pensée Sauvage, 1998.
CHEVALLARD, Y.; BOSCH, M.; GASCÓN, J. Estudar matemáticas: o elo perdido entre o ensino
e a aprendizagem. Porto Alegre: Artmed, 2001.
DUVAL, D. Registros de representação semiótica e funcionamento cognitivo do pensamento.
Revemat, Florianópolis, v. 7, n. 2, p. 266-297, 2012.
EDUCAÇÃO MATEMÁTICA. Curso EAE - Prof. Dr. Gérard Vergnaud – Aula 2 – O Estudo das
Estruturas Aditivas. Youtube, nov. 2017. Disponível em: <https://goo.gl/MTaYLp
(https://goo.gl/MTaYLp)>. Acesso em: 13/06/2018.
FRANCHI, A. Considerações sobre a teoria dos campos conceituais. In: MACHADO, S. D. A.
(Org.). Educação Matemática: uma (nova) introdução.  São Paulo: EDUC, 2010.
KAMII, C.; JOSEPH, L. L. Aritmética: novas perspectivas. Implicações da teoria de Piaget.
Tradução Marcelo Cestari Terra Lellis, Marta Rabioglio e Jorge José de Oliveira. Campinas:
Papirus, 1992.
MENEGHETTI, R.G; BICUDO, I. Uma discussão sobre a constituição do saber matemático e
seus reflexos na Educação Matemática. Bolema, Rio Claro, ano 16, n. 19, p. 58-72, 2003.
MOREIRA, M. A. A teoria dos campos conceituais de Vergnaud, o ensino de ciências e a
pesquisa nesta área. Investigações em Ensino de Ciências, Porto Alegre, v. 7, n. 1, p. 7-29,
2002.
MULLIGAN, C. H. Uso de polinômio para surpreender.In: DRUCK, S.; HELLMEISTER, C. P.;
PEIXOTO, C. M. (Org.). Coleção Explorando o Ensino. Brasília: Ministério da Educação,
Secretaria de Educação Básica, 2004. v. 3.
NUNES, T. et al. Introdução à Educação Matemática: números e operações numéricas. 2. ed.
São Paulo: Cortez, 2009.
PIAGET. J. A Epistemologia Genética. Petrópolis: Vozes, 1971.
PANIZZA, M. Reflexões gerais sobre o ensino da matemática. In: ______. (Org.). Ensinar
Matemática na educação infantil e nas series iniciais. Porto Alegre: Artmed, 2006.
POZEBON, S.; LOPES, A. R. L. V. Grandezas e medidas: surgimento histórico e contextualização
curricular. In: CONGRESSO INTERNACIONAL DE ENSINO DE MATEMÁTICA, 6., 2013, Canoas.
Anais... Canoas: ULBRA, 2013. Disponível em: <https://goo.gl/2DGo7h
(https://goo.gl/2DGo7h)>. Acesso em: 13/06/2018.
SILVA, M. C. L; VALENTE, W. R. Uma breve história do ensinar e aprender matemática nos anos
iniciais: uma contribuição para a formação professores. Educação Matemática Pesquisa,
São Paulo, v. 15, n. 4, p. 857-871, 2013. Disponível em: <https://goo.gl/LFKt7P
https://goo.gl/MTaYLp
https://goo.gl/2DGo7h
https://goo.gl/LFKt7P
(https://goo.gl/LFKt7P)>. Acesso em: 06/06/2018.
SMOLE, K. S.  A matemática em sala de aula: reflexões e propostas para os anos iniciais do
ensino fundamental. In: BITTAR, M; FREITAS, J. L. M; PAIS, L. C. (Org.). Matemática em sala de
aula: reflexões e propostas para os anos iniciais do ensino fundamental. Porto Alegre: Penso,
2013.
VERGNAUD, G. La théorie des champs conceptuels. Recherches en Didactique des
Mathématiques, v. 10, n. 23, p. 133-170, 1990. Grenoble: Ed. La Pensée Sauvage, 1990.
______. O que é aprender? In: BITTAR, M.; MUNIZ, C. A. (Org.). Aprendizagem Matemática na
perspectiva dos Campos Conceituais. Curitiba: CRV, 2009.
https://goo.gl/LFKt7P

Continue navegando