Prévia do material em texto
1 - Um homem, está andando numa rua horizontal, e para a uma distância x de um poste de 12 metros de altura. Nesse momento ele olha para um passáro que se encontra no topo do poste sob um ângulo de 30º. Considerando que a distância do chão até os olhos do homem é de 1,50 metros, encontre a distância x, aproximada por uma casa decimal e em seguida assinale o valor encontrado (considere: tg30º =0,58). R:18,1m 2 - Os pontos críticos e pontos de inflexão de um gráfico podem ser identificados através do estudo de sinal da primeira e da segunda derivada da função. Sendo assim, através da análise gráfica dos gráficos da primeira e da segunda derivada é possível chegar a algumas conclusões. Nesse contexto, observe os gráficos da Figura 3.5 e Figura 3.6. Assinale a alternativa que indique a análise correta para pontos críticos e de inflexão. R: 4/3 é a abscissa do ponto de inflexão 3 - Numa avaliação, um professor solicitou que os alunos encontrassem a derivada da seguinte função racional polinomial: . Chamou a atenção do professor a resolução do aluno Paulo, que derivou a função uma vez e fez as afirmações descritas nas asserções I e II, a seguir. A partir do apresentado, analise as asserções I e II e a relação proposta entre elas. I. A derivada da função é igual Pois: II. para derivar nesse caso é necessário usar a regra do quociente. A seguir, assinale a alternativa correta. R: A asserção I é uma proposição falsa, e a II é uma proposição verdadeira. 4 - Arquimedes (287-212 a. C.), inventor, engenheiro militar, médico e o maior matemático dos tempos clássicos no mundo ocidental, descobriu que a área sob um arco parabólico é dois terços da base vezes a altura. Além disso, o cálculo da área também pode ser calculado por meio da integral definida. Considerando o contexto apresentado e utilizando como suporte a figura a seguir, analise as afirmativas e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s) Fonte: Elaborada pela autora. I. (V) A área limitada pela curva e o eixo x pode ser calculada por meio da integral , e seu valor é igual à II. (F) A altura do arco (ver Figura) é dada por III. (F) Segundo Arquimedes, a área do arco parabólico é igual a dois terços da base b vezes a altura h do arco, portanto, a área é igual à IV. ( ) A área hachurada no primeiro quadrante é igual Assinale a alternativa que apresenta a sequência correta. R: F, V, V, F 5 - Um avião levanta vôo, formando um ângulo de 30º com o chão. Mantendo essa inclinação, ele estará a uma distância x, em km, do ponto de partida, quando atingir 4,5 km de altura. Nessas condições, o valor de x, é: R: 9 KM 6 - Para derivar funções, é necessário conhecer e saber utilizar as suas regras operatórias: deriva da soma entre duas funções, derivada do produto entre duas ou mais funções, derivada do quociente entre duas funções, derivada da cadeia, para derivar as funções constantes. Neste contexto, associe tais regras com suas fórmulas: 1 - Derivada do Produto. 2 - Derivada do Quociente. 3 - Derivada da Soma. 4 - Derivada da Cadeia. (2) (3) (1) (4) A partir das relações feitas anteriormente, assinale a alternativa que apresenta a sequência correta. R: 2, 3, 1, 4 7 - A derivada de uma função aplicada a um ponto P é igual ao coeficiente angular da reta tangente à curva no ponto P. Sendo assim, é possível encontrar as equações da reta tangente e da reta normal . Nesse contexto, encontre as equações da reta tangente e da reta normal à curva , no ponto e analise as afirmativas a seguir. I. A equação da reta tangente é igual a II. A equação da reta normal é igual a III. O coeficiente angular da reta normal é o valor inverso do coeficiente angular da reta normal. IV. A derivada da função é igual à , portanto, o coeficiente angular da reta normal é igual a . Está correto o que se afirma em: R: I e IV, apenas 8 - É possível, através da análise gráfica de função definida por várias sentenças, verificar o valor do limite em vários pontos e avaliar a continuidade da função. Fonte: elaborada pela autora Nesse contexto, através do gráfico avalie cada uma das afirmativas a seguir. 1. . 2. A função não é contínua em e . 3. A função não é contínua em e . 4. A função não é contínua em e . É correto afirmar o que se afirma em: R: I e IV, apenas 9 - Para usar a regra de L’Hospital diretamente, é necessário que a indeterminação seja do tipo ou . Quando isso não ocorre, devemos aplicar artifícios matemáticos para preparar a função e obter as indeterminações adequadas para aplicação da regra de L’Hospital. Nesse sentido, assinale a alternativa que indique qual é o resultado obtido ao calcular . R: -3 10 - Para derivar funções, é necessário saber como derivar as funções elementares, que são tabeladas, e também as regras operatórias: soma, produto e quociente. Para derivar a função , é necessário conhecer a derivada da função exponencial, logarítmica e a regra do quociente. Nesse sentido, assinale a alternativa que determine o valor de R: image6.gif image7.gif image8.gif image9.gif image10.gif image11.gif image12.gif image13.gif image14.gif image15.gif image16.gif image17.gif image18.gif image19.gif image20.gif image21.gif image22.gif image23.gif image24.gif image25.gif image26.gif image27.gif image28.gif image29.gif image30.gif image31.gif image32.gif image33.gif image34.gif image35.gif image36.gif image1.jpeg image2.gif image3.gif image4.gif image5.jpeg