Logo Passei Direto
Buscar

Prova N2 - Cálculo Aplicado Uma Variavel

Ferramentas de estudo

Questões resolvidas

3 - Numa avaliação, um professor solicitou que os alunos encontrassem a derivada da seguinte função racional polinomial: . Chamou a atenção do professor a resolução do aluno Paulo, que derivou a função uma vez e fez as afirmacoes descritas nas asserções I e II, a seguir. A partir do apresentado, analise as asserções I e II e a relação proposta entre elas. I. A derivada da função é igual Pois: II. para derivar nesse caso é necessário usar a regra do quociente. A seguir, assinale a alternativa correta. R: A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.

Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Questões resolvidas

3 - Numa avaliação, um professor solicitou que os alunos encontrassem a derivada da seguinte função racional polinomial: . Chamou a atenção do professor a resolução do aluno Paulo, que derivou a função uma vez e fez as afirmacoes descritas nas asserções I e II, a seguir. A partir do apresentado, analise as asserções I e II e a relação proposta entre elas. I. A derivada da função é igual Pois: II. para derivar nesse caso é necessário usar a regra do quociente. A seguir, assinale a alternativa correta. R: A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.

Prévia do material em texto

1 - Um homem, está andando numa rua horizontal, e para a uma distância x de um poste de 12 metros de altura. Nesse momento ele olha para um passáro que se encontra no topo do poste sob um ângulo de 30º. Considerando que a distância do chão até os olhos do homem é de 1,50 metros, encontre a distância x, aproximada por uma casa decimal e em seguida assinale o valor encontrado (considere: tg30º =0,58).
R:18,1m
2 - Os pontos críticos e pontos de inflexão de um gráfico podem ser identificados através do estudo de sinal da primeira e da segunda derivada da função. Sendo assim, através da análise gráfica dos gráficos da primeira e da segunda derivada é possível chegar a algumas conclusões.
 
Nesse contexto, observe os gráficos da Figura 3.5 e Figura 3.6.
Assinale a alternativa que indique a análise correta para pontos críticos e de inflexão.
R: 4/3 é a abscissa do ponto de inflexão
3 - Numa avaliação, um professor solicitou que os alunos encontrassem a derivada da seguinte função racional polinomial: . Chamou a atenção do professor a resolução do aluno Paulo, que derivou a função uma vez e fez as afirmações descritas nas asserções I e II, a seguir.
 
A partir do apresentado, analise as asserções I e II  e a relação proposta entre elas.
 
I. A derivada da função é  igual 
Pois:
II. para derivar nesse caso é necessário usar a regra do quociente.
 
A seguir, assinale a alternativa correta.
R: A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.
4 - Arquimedes (287-212 a. C.), inventor, engenheiro militar, médico e o maior matemático dos tempos clássicos no mundo ocidental, descobriu que a área sob um arco parabólico é dois terços da base vezes a altura. Além disso, o cálculo da área também pode ser calculado por meio da integral definida.
 
Considerando o contexto apresentado e utilizando como suporte a figura a seguir, analise as afirmativas e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s)
Fonte: Elaborada pela autora.
 
I. (V) A área limitada pela curva  e o eixo x pode ser calculada por meio da integral , e seu valor é igual à 
II. (F) A altura do arco (ver Figura) é dada por  
III. (F) Segundo Arquimedes, a área do arco parabólico é igual a dois terços da base b vezes a altura h do arco, portanto, a área é igual à 
IV. (  ) A área hachurada no primeiro quadrante é igual 
 
Assinale a alternativa que apresenta a sequência correta.
R: F, V, V, F
5 - Um avião levanta vôo, formando um ângulo de 30º com o chão. Mantendo essa inclinação, ele estará a uma distância x, em km, do ponto de partida, quando atingir 4,5 km de altura. Nessas condições, o valor de x, é:
R: 9 KM
6 - Para derivar funções, é necessário conhecer e saber utilizar as suas regras operatórias: deriva da soma entre duas funções, derivada do produto entre duas ou mais funções, derivada do quociente entre duas funções, derivada da cadeia, para derivar as funções constantes. Neste contexto, associe tais regras com suas fórmulas:
 
1 - Derivada do Produto.
2 - Derivada do Quociente.
3 - Derivada da Soma.
4 - Derivada da Cadeia.
 
(2) 
(3) 
(1) 
(4) 
 
A partir das relações feitas anteriormente, assinale a alternativa que apresenta a sequência
correta.
R: 2, 3, 1, 4
7 - A derivada de uma função aplicada a um ponto P é igual ao coeficiente angular da reta tangente à curva  no ponto P. Sendo assim, é possível encontrar as equações da reta tangente e da reta normal . Nesse contexto, encontre as equações da reta tangente e da reta normal à curva , no ponto e analise as afirmativas a seguir.
 
I. A equação da reta tangente é igual a 
II. A equação da reta normal é igual a 
III. O coeficiente angular da reta normal é o valor inverso do coeficiente angular da reta normal.
IV. A derivada da função é igual à , portanto, o coeficiente angular da reta normal é igual a .
 
Está correto o que se afirma em:
R: I e IV, apenas
8 - É possível, através da análise gráfica de função definida por várias sentenças, verificar o valor do limite em vários pontos e avaliar a continuidade da função.
 
Fonte: elaborada pela autora
 
Nesse contexto, através do gráfico avalie cada uma das afirmativas a seguir.
 
1. .
2. A função não é contínua em e .
3. A função não é contínua em e .
4. A função não é contínua em e .
 
É correto afirmar o que se afirma em:
R: I e IV, apenas 
9 - Para usar a regra de L’Hospital diretamente, é necessário que a indeterminação seja do tipo ou . Quando isso não ocorre, devemos aplicar artifícios matemáticos para preparar a função e obter as indeterminações adequadas para aplicação da regra de L’Hospital.
Nesse sentido, assinale a alternativa que indique qual é o resultado obtido ao calcular .
R: -3
10 - Para derivar funções, é necessário saber como derivar as funções elementares, que são tabeladas, e  também as regras operatórias: soma, produto e quociente. Para derivar a função , é necessário conhecer a derivada da função exponencial, logarítmica e a regra do quociente. Nesse sentido, assinale a alternativa que determine o valor de 
R: 
image6.gif
image7.gif
image8.gif
image9.gif
image10.gif
image11.gif
image12.gif
image13.gif
image14.gif
image15.gif
image16.gif
image17.gif
image18.gif
image19.gif
image20.gif
image21.gif
image22.gif
image23.gif
image24.gif
image25.gif
image26.gif
image27.gif
image28.gif
image29.gif
image30.gif
image31.gif
image32.gif
image33.gif
image34.gif
image35.gif
image36.gif
image1.jpeg
image2.gif
image3.gif
image4.gif
image5.jpeg

Mais conteúdos dessa disciplina