Buscar

2012.APOSTILA MICROB EXPERIMENTAL

Prévia do material em texto

UNIVERSIDADE ESTADUAL DA PARAÍBA 
CENTRO DE CIÊNCIAS E TECNOLOGIA 
DEPARTAMENTO DE QUIMICA 
 
 
 
 
MICROBIOLOGIA EXPERIMENTAL 
 
 
 
PROFESSORAS: 
Dra. ELIANE ROLIM FLORENTINO 
Dra. ISANNA MENEZES FLORÊNCIO 
 
 
 
 
 
 
 
 
 
 
 
 
CAMPINA GRANDE 
2012 
2 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
 
1 Técnicas Básicas em Microbiologia e Segurança Laboratorial 
 
A finalidade das aulas práticas de microbiologia é demonstrar ao estudante as 
metodologias e princípios usados em laboratório de microbiologia, reforçando conceitos 
teóricos estudados. Nas aulas serão utilizados vários microrganismos, os quais são bastante 
vulneráveis e alguns patogênicos. Desta forma, é essencial observar normas de segurança 
no laboratório, para evitar principalmente contaminação dos estudantes, técnicos e 
professores e impedir a contaminação dos dispositivos experimentais por microrganismos 
estranhos ao estudo. 
 
I.1 Regras Gerais de Conduta e Segurança Laboratorial 
 O laboratório é um lugar que pode ter o seu potencial de risco de acidentes 
diminuído desde que certas regras de conduta e segurança sejam obedecidas. 
 É fundamental se ter critério, planejamento, conhecimento e calma no trabalho. 
 O uso de bata de algodão branco, comprido e abotoado, é essencial no laboratório 
de Microbiologia, pois o mesmo protege a roupa de contaminação. O aluno deve 
usar calças compridas e sapato fechado para evitar acidentes, e aqueles de cabelos 
compridos devem mantê-los presos. 
 Deixar os materiais como bolsas, pastas, livros e cadernos em local reservado e 
nunca sobre as bancadas de trabalho. 
 Não comer, não beber, nem fumar no laboratório. 
 Manter as mãos, canetas, lápis e quaisquer objetos sem contato com a boca, olhos 
ou ouvidos. 
 Lavar as mãos com detergente e secá-las com papel toalha antes e depois da aula 
prática. 
 Nunca tentar identificar substâncias pela textura, sabor ou odor. 
 Os extintores de incêndios e a caixa de primeiro socorros devem ser colocados em 
locais visíveis e de fácil acesso. 
 Manter as bancadas limpas e organizadas. 
 Ler com atenção o rótulo do produto a ser usado. 
3 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
 Rotular todas as amostras, reagentes, soluções, meios de cultura, etc. 
 Trabalhar apenas com instrumentos adequados, tomando cuidado especial com os 
vidros, que não dever conter pontas ou arestas cortantes. 
 Proteger o rótulo dos frascos ao verter o seu conteúdo. 
 Não debruçar sobre as bancadas. 
 Observar as propriedades dos reagentes, soluções e meios de cultura para um 
adequado acondicionamento e estocagem. 
 Não permitir a entrada de pessoas estranhas no laboratório. 
 Manter atenção constante nas ações executadas, evitando movimentação e 
conversas desnecessárias que possam causar distrações e provocar acidentes. 
 O aluno deve deixar o laboratório apenas após ter terminado o trabalho prático do 
dia, sem dúvidas nas técnicas realizadas. 
 
1.2 Normas de Trabalho em Microbiologia 
 No inicio de cada analise traçar um plano de trabalho considerando o tempo 
necessário para cada analise e sua leitura. 
 Trabalhar sempre de maneira ordenada, tranqüila, constante e metódica, evitando 
movimentos desnecessários como troca de lugar, assento, etc. 
 Limpar e sanitizar a superfície de mesas e balcões antes e depois do trabalho de 
cada dia. 
 Efetuar registros de analises, anotando o tipo do produto, procedência, dia e hora da 
entrada no laboratório e qualquer outra observação previa á análise. Na análise 
propriamente dita anotar: método, meio de cultura empregado e resultados obtidos. 
 Identificar as amostras antes de iniciar a analise e em geral, não descartar até obter 
os resultados. 
 O material a ser analisado deve ser tocado exclusivamente com instrumentos 
estéreis e nunca com as mãos. 
 Não cheirar os meios de cultura inoculados 
 Evitar salpicar mesas e pisos com água ou soluções corantes. 
 Usar bico de Bunsen, entre o material e o analista. 
4 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
 Cuidado ao acender o bico de Bunsen. Observar se não existem produtos 
inflamáveis (álcool, éter, acetona etc.) nas proximidades da chama 
 No caso de derramamento do material inoculado, comunicar imediatamente ao 
professor ou ao pessoal técnico do laboratório, sanitizar e esterilizar imediatamente 
(cobrir a área com sanitizante adequado e deixar de 15 a 30 minutos antes de 
limpar). 
 Vidrarias e materiais devem ser colocados após o uso em recipientes adequados 
com soluções de desinfetante. 
 As pipetas devem colocar algodão na extremidade de sucção para evitar 
contaminação do material e do analista. 
 Os tubos de ensaios com cultura deverão ser colocados nas estantes ou suportes 
adequados, nunca nos bolsos do avental ou deitado sobre as bancadas. 
 Todo material contaminado (pipetas, bastões, lâminas, lamínulas etc.), deverá ser 
colocado em recipientes adequados (provetas, cubas, ou vidros com desinfetantes), 
para serem esterilizados posteriormente; nunca deixá-los sobre a mesa de trabalho 
ou pia. 
 O material utilizado deve receber a seguinte seqüência de tratamento: 
a) Esterilização – em autoclave a 121ºC durante 30 minutos 
b) Lavagem em água corrente e detergente 
c) Secagem em estufa 
d) Esterilização - em autoclave a 121ºC durante 15 minutos 
e) Armazenamento 
 Os cultivos após a leitura devem ser esterilizados. 
 As laminas e lamínulas usadas devem ser colocadas em recipientes com 
desinfetantes 
 Não retirar qualquer cultivo do laboratório. 
 Manter registro do controle diário de temperaturas das estufas. 
 Realizar o controle de temperatura ambiental em câmaras assépticas e fluxo 
laminar. 
5 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
 Analisar conservas e produtos esterilizados somente em câmaras assépticas ou fluxo 
laminar. 
 Ao final do experimento, deve-se limpar a bancada, desligar os aparelhos, fechar o 
bico de Busen e lavar as mãos antes de sair do laboratório 
 
 
 
2 Limpeza de Vidraria 
 
O bom desempenho da prática laboratorial depende da máxima limpeza da 
aparelhagem usada. 
Para a limpeza da vidraria o ácido nítrico ou ácido clorídrico são meios eficientes. 
Os agentes de limpeza alcalinos tais como fosfatos tri-sódico e os detergentes 
sintéticos são muito úteis, mas requerem uma enxaguagem prolongada para eliminação 
completa de resíduos. 
A adição de algumas gotas de azul de bromotimol a 0,04g/L é uma maneira de se 
testar a presença de resíduos alcalinos ou ácidos. 
Este indicador oferece a vantagem de cor do amarelo ao azul esverdeado na faixa de 
pH 6,5 a 7,3. 
 
 
 
 
2.1 Técnicas de Lavagem 
6 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
 
 A lavagem deve ser realizada cuidadosamente para que não fiquem resíduos ácidos 
ou alcalinos no material. 
 Toda a vidraria deve ser guardada limpa e seca. Materiais usados para análises 
microbiológicas devem ser esterilizados antes e após o seu uso. 
 
2.1.1 Limpeza de Material em Uso 
 Esterilização emautoclave – 121ºC durante 30 minutos. 
 Retirar todo material lavar com água da torneira. 
 Deixar o material submerso em água mais detergente. 
 Escovar o interior de cada utensílio com solução detergente utilizando escova 
própria. 
 Enxaguar com água de torneira. 
 Verificar, após essa operação, se a água esta escorrendo livremente, sem que haja 
retenção. 
 Enxaguar com água destilada. 
 Secar em estufa – 160/170ºC durante 1 a 2 horas. 
 
2.2 Preparo de Material Usado em Análises Microbiológicas 
 
 Preparo de Rolhas de Algodão 
 As rolhas de algodão são empregadas no vedamento de tubos e frascos em 
microbiologia. O algodão utilizado é geralmente hidrófobo (não absorvente). 
 Para se preparar uma rolha, corta-se um quadrado pequeno de algodão (cujo 
tamanho se determina pela prática), dobra-se no lado oposto para fazer um retângulo – mais 
ou menos 3,7 cm de largura e enrola-se formando um cilindro justo. A rolha deve entrar 
ajustadamente, devendo estar 1/3 fora da boca do tubo. A fim de se proteger a rolha de 
algodão permitindo sua múltipla utilização, é aconselhável envolver a extremidade da 
mesma com um pedaço de gaze. Uma rolha deve ser bem feita para poder ser empregada 
varias vezes. 
 
7 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
 Alças de Platina ou de Níquel-Cromo 
 Empregada para transferência de um cultivo para um meio de cultura fresco. A alça 
é empregada para fazer streak (isolamento de culturas) e também para inoculação por meio 
de repique em tubos de ensaio contendo meio de cultura sólido. 
 Quando utilizar alça de platina nas práticas, a mesma dever ser aquecida até o rubro, 
tanto antes do uso como depois dele. Antes de tocar o material de cultura, deve-se deixar a 
alça esfriar, mantendo-a próxima de chama. 
 
 
Alça de Platina 
 Pipetas 
 A pipeta é empregada na microbiologia, para transferência de culturas liquidas e 
diluições sucessivas das amostras. O material deve ser aspirado lentamente, mantendo-se a 
pipeta com o dedo, médio e o polegar, com o indicador controlando a vazão do liquido. É 
importante manter o dedo indicador seco. 
 Na transferência de culturas (principalmente em caso de tubos) deve-se evitar 
escorrer o liquido nas paredes internas do mesmo. No trabalho com placas, 
normalmente a ultima gota do liquido permanece na ponta da pipeta, devendo toca-la na 
região seca da placa. É comum colocar-se algodão na extremidade superior da pipeta, 
evitando à contaminação por bactérias das vias aéreas superiores e também a finalidade de 
impedir que o analista se contamine acidentalmente quando trabalhar com microrganismos 
patogênicos. 
 Para a esterilização, as pipetas devem estar adequadamente limpas e secas. Deverão 
ser embaladas individualmente empregando-se o papel “Kraft” ou em conjunto utilizando 
pipetadores de inox e, em seguida, procede-se a esterilização. 
 
 Placas de Petri 
8 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
 As placas de Petri são usadas para cultivar com meios de cultura sólidos. Essa 
vidraria deve estar lavada, seca e posteriormente embalada e esterilizada. As placas podem 
ser embrulhadas com papel “Kraft” individualmente ou em conjunto, de acordo com a 
rotina de trabalho. 
 As placas de Petri com meios de cultura, com ou sem crescimento de 
microrganismos, só poderão ser abertos nas proximidades da chama, para evitar 
contaminação. 
 No preparo da placa para contagem do tipo “pour plate” deve-se abrir à placa 
somente o necessário para permitir a introdução das pipetas. 
 
 
Placas de Petri 
 
3 Esterilização 
 
 Esterilizar um material é inativar todos os microrganismos nele existentes. Ao ato 
de esterilizar, dá-se o nome de ESTERILIZAÇÃO, ou seja, é o processo capaz de destruir 
ou eliminar todas as formas vivas de um material ou ambiente. Através da esterilização dos 
meios de cultura e dos instrumentos utilizados nos trabalhos de laboratório, é possível o 
isolamento e a manutenção de culturas puras. 
 A esterilização pode ser feitas através de diferentes processos, empregando-se 
agentes físicos (calor, atrito, radiação, filtração) e agentes químicos. A esterilização pelo 
calor é de larga aplicação em microbiologia. 
 Todo material para isolamento e cultivo de microrganismos no laboratório é, 
obrigatoriamente, esterilizado. 
 
3.1 Métodos de Esterilização 
9 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
 
3.1.1 Calor seco 
 
Nos ambientes secos, eliminação dos microrganismos ocorre pela oxidação ou 
queima das proteínas presentes no material celular. Isso requer uso de temperaturas 
elevadas durante determinados períodos (160ºC ou 170ºC durante 1 a 2 horas). 
A utilização do calor seco como processo de esterilização demanda, geralmente, 
a utilização de estufas ou fornos apropriados (forno de Pasteur), ou a utilização 
direta da chama. 
O calor seco ( como forno ou estufa) penetra nas substâncias mais 
lentamente que o calor úmido (vapor) é geralmente usado para esterilizar objetos de metal e 
vidros. 
 
3.1.1.1 Flambagem em chama direta 
 A flambagem é realizada em chama direta com bico de Bunsen ou lamparina. 
Consiste em se passar a alça ou agulha de platina sobre a chama até o rubro, com a 
finalidade de esterilizá-las, ou então as bocas dos tubos de ensaio, ou outros frascos, para 
evitar possíveis contaminações pelo ar na transferência ou inoculação das células. 
 As alças ou agulhas de platina devem ser mantidas em posição vertical ou 
ligeiramente inclinadas, de maneira que toda extensão da alça ou agulha fique 
demasiadamente rubra. É importante observar que deve-se introduzir a alça na parte mais 
quente da chama. 
 Em relação aos frascos e tubos, deve-se evitar aquecê-los demasiadamente para 
evitar a quebra. Pipetas não devem ser flambadas, pois com o aquecimento pede ocorrer um 
dilatamento ocasionando diferenças no volume a ser medido. 
 
3.1.1.2 Ar quente 
Empregado para a esterilização de placas de Petri, pipetas, tubos de diluição, tubos 
de ensaios e outras vidrarias. As vidrarias devem ser embaladas em papel apropriado que 
adquire cor parda, não devendo escurecer muito, nem se tornar quebradiço. 170 a 180ºc por 
1 a 2 horas 
10 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
Deve-se deixar o forno ou estufas de esterilização esfriar por si, pois a abertura do 
forno ainda quente provoca variação brusca de temperatura, podendo-se levar à quebra do 
material. 
 
3.1.2 Calor úmido 
 
Esse método de esterilização provoca a inativação ou coagulação de proteínas dos 
microrganismos. Embora a maioria dos microrganismos morra as temperaturas inferiores a 
100º C, existem bactérias que produzem endósporos resistentes a essa temperatura. A 
utilização o calor úmido não é indicada para a esterilização de materiais que podem ser 
afetados pela umidade ou pelas altas temperaturas, como alguns açúcares, proteínas e 
vitaminas. Geralmente, na esterilização pelo calor úmido utiliza-se o vapor d´água sob 
pressão ( autoclavagem) ou a tindalização. 
 
3.1.2.1 Temperatura a 100ºC 
A água fervente: a imersão de água fervente é empregada para a esterilização de 
instrumentos cirúrgicos, seringas ou injeção. A fervura destrói quase que instantaneamenteos germes patogênicos não esporulados, todavia, não se deve esquecer que há esporos 
resistentes à ação da água fervendo, durante 15 minutos ou mais. 
 
 
3.1.2.2 Vapor fluente 
Pode ser feito em autoclave com o orifício de escapamento aberto. 
 
3.1.2.3 Tindalização 
Consiste num processo de esterilização fracionada, é efetuado o aquecimento a 
100ºC por em intervalos de 24 horas em três vezes consecutivas. Tyndall (1877) verificou 
que repetindo o aquecimento 2 ou 3 dias consecutivos, consegue-se destruir todas as 
bactérias. Dá-se o nome de tindalização ou esterilização fracionada a esse aquecimento, 
com intervalo adequado. 
11 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
1º aquecimento: destrói apenas as formas vegetativas, não destruindo os esporos. 
Resfriamento: germinação. 
2º aquecimento: morte das formas vegetativas dos esporos poupados no primeiro 
aquecimento. Resfriamento: germinação 
3º aquecimento: morte dos possíveis sobreviventes. 
 Este processo é freqüentemente empregado para esterilização de meios de cultura 
que se alteram a temperatura elevada, como soro, meios contendo açúcar e outros. 
 
3.12.2 Temperatura superior a 100ºC – Vapor sob pressão 
É o meio mais eficaz de esterilização, realizado em 
autoclave. 
A autoclave consiste, essencialmente, de uma caldeira 
cilíndrica de paredes resistentes fechada superiormente, por 
uma tampa, que veda perfeitamente, devido à interposição de 
uma borracha e parafusos que se apertam. 
No interior da caldeira existe um suporte sobre o qual se 
coloca uma cesta metálica contendo o material a ser 
esterilizado. Entre o fundo da cesta metálica e o funda da 
caldeira fica um espaço que se enche de água. A tampa da 
autoclave possui um orifício de escapamento, uma válvula de 
segurança e um manômetro que indica pressão e a temperatura 
correspondente. 
 
3.2 Eficiência Comparativa entre Calor Seco e Calor Úmido 
 
O calor úmido é mais eficiente, pois tem um poder de penetração maior que o calor 
seco. Foi verificado que em um fardo de flanela exposto ao calor seco a 150ºC/4 horas, a 
temperatura atingida no centro sobe apenas a 83ºC, ao passo que a temperatura de 120ºC 
em autoclave durante meia hora, a temperatura central chega a 117ºC. 
A razão da maior eficiência do calor úmido reside no fato que assim como outra 
reação química, a termo-coagulação das proteínas é também catalizada pela água. 
12 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
 
4 Filtração 
 
 Na filtração empregam-se filtros que são utilizados no laboratório e na indústria para 
esterilizar materiais que não podem ser esterilizados por autoclavação, como vitaminas, 
proteínas termossensíveis. Inicialmente os filtros eram de cerâmica porosa ou de vidro 
sintético. Muitos deles foram substituídos por membranas filtrantes, filtros de membrana de 
celulose extremamente finos (150μm), com poros pequenos o suficiente para impedir a 
passagem de microrganismo. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
AULA PRÁTICA Nº 1 
PREPARAÇÃO E ESTERILIZAÇÃO DE MEIOS DE CULTURA 
 
1 INTRODUÇÃO 
 
 1 Meios de culturas 
 
 O estudo dos microrganismos, sua identificação e a avaliação de suas populações 
nos diferentes materiais e ambientes requerem seu cultivo nas condições de laboratório. 
 Meios de cultura são substratos adequados ao crescimento, multiplicação e 
desenvolvimento de microrganismos fora de seu habitat natural. 
 Os primeiros meios utilizados foram naturais e líquidos como o caldo de pimenta, a 
urina, o sangue e o leite. 
 O cultivo dos microrganismos exige que determinadas condições sejam atendidas. 
As exigências nutritivas e ambientais são viáveis como o tipo de microrganismo, tornando 
impossível a produção de um único meio que satisfaça todas as condições de todos os tipos 
de microrganismos. Por outro lado, é difícil e impraticável a formulação de um meio de 
cultura ideal para cada tipo de microrganismo. No cultivo de bactérias heterotróficas, o 
meio mais utilizado é o caldo nutriente (CN) e a sua respectiva forma sólida, o ágar 
nutriente (AN). Para fungos, o meio comumente utilizado é o ágar dextrose ou Sabouraud. 
No preparo de um meio de cultura é necessário conhecer as exigências nutricionais dos 
microrganismos. São considerados componentes essenciais do meio de cultura: 
 
a) Fonte de energia: no caso de microrganismos quimiotróficos, esta exigência é 
satisfeita pela presença de compostos orgânicos ou inorgânicos específicos a ser 
oxidados, como por exemplo o enxofre ou o amônio. Para os fotossintetizantes, há a 
necessidade de luz, que deve ser fornecida pelo ambiente. 
b) Fonte de carbono: para microrganismos heterotróficos, há a necessidade da 
presença de compostos orgânicos, enquanto que para os autotróficos é necessário 
CO2, que pode ser suprido pelo ambiente. 
c) Fonte de nitrogênio: proteínas, aminoácidos, nitrato, amônio ou N2. 
14 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
d) Fatores de crescimento: Vitaminas. 
e) Fonte de minerais: P, K, S, Ca, Fe, Mg, Mn, Zn, Cu etc. 
f) Água 
 
 Devido às dimensões dos microrganismos, além dos nutrientes, o meio de cultura 
deve suprir algumas condições ambientais: 
 
a) pH: cada organismo exige um pH adequado para seu crescimento. A maioria das 
bactérias, por exemplo, exige um pH em torno de 7. 
b) Atmosfera: presença de O2,CO2; condições para o crescimento de aeróbios, 
anaeróbios, facultativos ou microaerófilos. 
c) Pressão osmótica: regulada pelos constituintes do meio. Para organismos marinhos 
e halofílicos, há necessidade da adição de uma certa quantidade de sal, de modo a 
obter a concentração adequada para seu crescimento. 
 Nem todas as condições ambientais podem ser controladas no meio de cultura. 
Temperatura, luz, pressão hidrostática e, na maioria das vezes, a atmosfera devem ser 
controladas no ambiente (incubadora ou estufa). 
 Alguns nutrientes, como as substâncias termolábeis (vitaminas, açúcares, 
aminoácidos e antibióticos), exigem cuidados especiais. Eles devem ser esterilizados por 
filtração, sendo adicionado aos meios após a autoclavagem e resfriamento acima do ponto 
de solidificação do meio. 
 
II.Classificação dos meios de cultura 
 
2.1 Quanto à origem: 
 
a) Naturais: aqueles que já existem prontos na natureza. Ex: leite, sangue, caldo de 
frutas, caldo de cana e outros. 
b) Artificiais: aqueles que são elaborados. Ex: ágar nutriente. 
 
2.2 Quanto à composição: 
15 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
 
a) Complexos: são aqueles que não apresentam uma composição química definida, 
como os que contêm extrato de carne ou extrato de levedura, sangue, leite, ovos e 
outros. 
b) Sintéticos: meios que têm a composição química definida. 
 
2.3 Quanto ao estado físico: 
 
a) Sólidos: são meios que já existem na natureza no estado sólido, ou que foram 
tornados sólidos pela adição de uma substância solidificante como o ágar ( 1,5%), a 
gelatina ou a sílica-gel. São utilizados para o isolamento e avaliação de populações(contagens), ou mesmo para o cultivo normal. Ex: fatias de batata e ágar nutriente. 
O ágar-ágar é o solidificante mais utilizado em microbiologia. Ele é um 
polissacarídeo extraído de algas marinhas do gênero Gelidium, constituído de 
unidades monométricas de galactose e ácido galacturônio. Foi introduzido na 
microbiologia por Robert Koch e até hoje vem sendo utilizado devido a suas 
seguintes características: 
 É inerte para a maioria dos microrganismos; 
 É transparente; 
 É neutro; 
 Possui ponto de fusão a 100 ºC 
 Possui ponto de solidificação de 40-45ºC, o que permite a sua mistura com 
microrganismos ou com substâncias que se alteram em temperaturas elevadas (Ex: 
proteínas). 
b) Semi – sólidos: meios que apresentam consistência intermediária, como por 
exemplo o meio semi-sólido ( 0,5% de ágar) utilizado para a verificação da 
mobilidade ou para a caracterização de microrganismos microaerófilios. 
c) Líquidos: são meios utilizados na forma de caldo. Eles permitem obter maior 
concentração celular em menor tempo. O crescimento de microrganismos 
unicelulares pode ser avaliado nesses meios pelas mudanças de turvação. Ex: Caldo 
nutriente. 
16 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
 
2.4 Quanto à finalidade 
a) Meios gerais ou básicos: são aqueles que permitem o crescimento de um grande 
número de espécie microbiana dentro de um grupo: ágar nutriente para bactérias, 
Sabouraud ou ágar dextrose para fungos. 
b) Meios enriquecidos: são meios de culturas adicionados de misturas complexas e 
naturais como leite, sangue, soro e extrato de tecidos animais ou vegetais, que 
permitem o crescimento de microrganismos nutricionalmente mais exigentes 
(fastidiosos). Ex: ágar sangue para isolamento e cultivo das bactérias dos gêneros 
Neisseria, Staphylococcus e Streptococcus. 
c) Meios seletivos: São aqueles que possuem uma composição ou uma ou mais 
condições que seleciona o tipo de microrganismo que vai crescer. São muito úteis 
no isolamento e na identificação. Ex: meio SS ágar para Salmonella e Shigella. 
d) Meios indicadores ou diferenciais: são aqueles que destacam (indicam) 
determinadas características metabólicas do microrganismo. São também muito 
úteis no isolamento e na identificação. Ex: meio Mac Conkey, para bactérias 
entéricas. 
e) Meios de enriquecimento: São aqueles que permitem o desenvolvimento 
diferenciado de microrganismos, favorecendo o crescimento de um grupo em 
detrimento de outros. 
f) Meios de dosagem: são empregados na dosagem de substâncias, tais como 
vitaminas, aminoácidos e desinfetantes. 
g) Meios de transporte, estocagem ou manutenção: mantêm a viabilidade dos 
microrganismos por mais tempo. Por exemplo, a presença de glicose no meio de 
cultura faz com que o microrganismo se multiplique mais rapidamente, exaurindo 
toda a fonte de energia. A mudança do tipo de açúcar permitirá um crescimento 
mais lento, e a cultura sobreviverá mais tempo. 
 
 
 
 
17 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
III.Meios desidratados 
 
 A maior parte dos meios de cultura pode ser obtida na forma desidratada e neste 
caso alguns aspectos devem ser obtidos: 
 
3.1 Armazenamento e conservação 
 Anotar em livro próprio a data da recepção dos meios de cultura e ingredientes 
empregados na formulação. 
 Armazena-lo de acordo com as especificações contidas no rotulo, em uma área de 
pouca umidade, afastada da luz direta do sol, das autoclaves, estufa de secagem e 
qualquer outra fonte de calor. 
 Quando especificado no rotulo, manter sob refrigeração. 
 Após o uso assegurar-se de que o frasco esta bem fechado e armazena-lo em local 
próprio. 
 Descartar o meio caso o pó não esteja fluindo facilmente ou se houver alterações na 
cor e/ou consistência. 
 
 3.2 Pesagem 
 
 Ao preparar meios e cultura deve-se usar primeiro o estoque mais velho. Não se 
deve abrir um novo lote de meio ate que o anterior tenha esgotado. 
 Usar uma balança cuja exatidão se verifique freqüentemente. Os meios desidratados 
são hidroscópicos e desta forma, a pesagem deve ser feita rapidamente e em local de pouca 
umidade. 
 
3.3 Dissolução 
 
 Usar vidros bem lavados e enxaguados. Não usar água suspeita de conter cloro, 
cobre ou detergentes. Usar água deionizada ou destilada. 
 Antes a aplicar calor dissolver meios desidratados deve-se ler o rotulo. Alguns 
meios não devem ser submetidos a temperaturas acima de 55ºC, (Caldo urea, Agar urea) 
18 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
enquanto que outros meios desidratados devem ser aquecidos a fim de garantir a completa 
dissolução e distribuição uniforme dos ingredientes. 
 O aquecimento deve ser feito sob agitação continua e suave, evitando que o mesmo 
se queime no fundo do frasco. A agitação do meio durante o aquecimento deve ser feita 
com cautela porque alguns meios, especialmente os que contém Agar, podem formar 
espuma e transbordar. 
 Os meios que contém Agar devem permanecer, em geral durante 5 a 10 minutos em 
repouso na água, antes de serem aquecidos, para permitir que as partículas de Agar se 
reidratem adequadamente, elevando a solubilidade do Agar resultando em gel mais 
uniforme. 
 O meio preparado deve ser distribuído em frasco ou tubo (permitindo uma pequena 
folga da tampa) apropriado e levado para esterilização. 
 Ao distribuir o meio em recipientes adequados, não devemos colocar mais de 2/3 da 
capacidade do mesmo. 
 
3.4 Esterilização 
 
 Alguns meios não devem ser esterilizados em autoclave. Em alguns casos, os meios 
devem ser esterilizados por filtração, outros são tão seletivos que não necessitam de calor 
nem de filtro (Agar Salmonella-shiguella, Agar citrato desoxicolato, Caldo de tetrationato, 
Caldo de selenito). A atividade seletiva destes meios é destruída durante a autoclavação. 
 O microbiologista dispõe de numerosos filtros de diferentes tipos e poros de 
tamanhos variáveis. Os filtros de membrana (Millipore, Belford, Mass) são provavelmente 
o sistema de filtro mais usado e podem ser empregados com adaptadores próprios 
permitindo a esterilização de grandes volumes. 
 Na esterilização por autoclavação o meio não deve ser tratado deficientemente ou 
excessivamente. O excesso de tratamento em um meio pode acarretar um erro pior do que a 
subesterilização. É necessário pré-aquecer meios em volumes maiores, para evitar demora 
em alcançar a temperatura de esterilização. Nunca deve ser autoclavado mais de dois litros 
por recipiente. Antes de esterilizar o pH do meio deve ser comprovado em potenciômentro 
19 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
(ajustado com tampões). Esta medida deve ser tirada a 25ºC e normalmente não precisa ser 
ajustada. A adição de componentes pode afetar o equilíbrio do meio. 
 
3.5 Armazenamento do meio pronto 
 
 De forma geral, os meios prontos devem ser armazenados a temperatura entre 2 e 
8ºC (geladeira). O efeito nocivo comumente associado ao armazenamento é a desidratação. 
Esta não será problema em meios líquidos e sim em meios em placas, principalmente em 
laboratórios pequenos onde certos meios são usados ocasionalmente. Estes meios em placas 
devem ser conservados em sacos plásticos, selados, para minimizar a perda de umidade, e 
estocadosem posição invertida. Todos os meios devem ser levados a temperatura ambiente 
antes de seu uso. 
 Meios como Agar padrão, Agar batata e outros, podem ser guardados em volumes 
para serem adicionados em placas (15 mL). No momento da analise serão fundidos e 
resfriados. 
 
IV. Objetivo: 
 
Familiarizar o aluno na preparação e esterilização de meios de cultura 
 
V. Procedimento 
 
5.1 Preparo do meio líquido 
 Pesar o meio de cultura indicado pelo professor de acordo com as especificações do 
fabricante, em papel alumínio ou vidro de relógio e, transferi-lo para um becker; 
 Colocar a quantidade de água de acordo com a quantidade do meio a ser preparado. 
 Dissolver na chapa de aquecimento 
 Medir o pH e se necessário ajustar pela adição de NaOH ou HCl 1N 
 .Distribuir em tubos (na proporção de 5,0 ml) 
 Esterilizar em autoclave a 121ºC por 15 minutos; 
 
20 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
5.2 Preparo do meio sólido 
 Pesar o meio de cultura indicado pelo professor de acordo com as especificações do 
fabricante, em papel alumínio ou vidro de relógio e, transferi-lo para um frasco de 
Erlenmeyer; 
 Colocar a quantidade de água de acordo com a quantidade do meio a ser preparado. 
 Dissolver na chapa de aquecimento até completa dissolução do meio de cultura 
 Colocar a boneca (tampa) e a coifa de papel com nome do meio e a data do preparo 
 Medir o pH e se necessário ajustar pela adição de NaOH ou HCl 1N 
 Esterilizar em autoclave a 121ºC por 15 minutos; 
 Sequencia do preparo de meio de cultura para a produção de meio líquido (caldo), 
sólido (ágar) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MEIO AGAR OU 
CALDO 
Água destilada 
Dissolver 
Corrigir pH 
Esterilizar em autoclave 
Armazenar 
Distribuir 
Agitação 
21 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
6 Instruções para o Manejo da Autoclave 
 
I. Adicionar a quantidade de água se necessário para evitar danos à resistência; 
 
 
 
 
 
 Cesto de Inox Resistência coberta com água 
 
II. Colocar o material na cesta de inox devidamente acondicionado 
III. Tornear a tampa, apertar os parafusos por porcas sempre opostas, de forma que a 
tampa encaixe perfeitamente sobre o friso existente para isto. 
 
 
IV. Abrir a válvula de vapor e ligar a corrente elétrica ou ligar e aceder o gás. 
V. Ao sair vapor pela válvula de forma contínua, esperar 5 minutos para a expulsão de 
todo ar e só então fechar a válvula. 
VI. Vigiar o manômetro e a válvula de segurança. Quando a válvula deixar escapar 
vapor, verificar a pressão. 
VII. Quando a temperatura atingir 121º C, controlar para que permaneça estável (regular 
mediante válvula de escape do vapor). 
VIII. Inicia-se a contagem de esterilização, geralmente de 15 a 30 minutos. 
IX. Desligar o aparelho, deixar esfriar e diminuir a pressão. 
X. Esperar que o ponteiro do manômetro desça até o zero e então abrir a válvula de 
vapor 
Válvula de vapor 
Manômetro 
Parafusos 
22 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
XI. Terminando o tempo necessário para esterilização, pode-se abrir lentamente o 
orifício de escapamento, para a pressão descer mais rapidamente; 
XII. Abrir autoclave somente quando a pressão interna for igual à externa. A abertura 
antecipada da autoclave é muito perigosa. O líquido com temperatura acima de 100º 
C não evapora quando a pressão é elevada, baixando bruscamente a pressão, o 
líquido evapora rapidamente, podendo causar uma violenta explosão, fazendo saltar 
rolhas e meios, além de causar queimaduras no operador. 
 
 
 
Autoclave com tampa aberta 
 
7 Importância da Eliminação do Ar Residual na Autoclave 
 
 O ar é um mau condutor de calor. A ação esterilizante do vapor é devida à facilidade 
com que ele se condensa sobre as superfícies mais frias dos objetos a serem esterilizados, 
cedendo-lhes o seu calor latente. O ar interfere nessa condensação, formando um filme 
protetor em torno do material evitando assim a penetração do calor. 
 
 
 
 
 
 
 
Tampa 
Chave de controle 
do termostato 
23 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
AULA PRÁTICA Nº 2 
PRESENÇA DE MICRORGANISMOS NO AMBIENTE 
 
1 Introdução 
 
Os microrganismos são encontrados nos mais diversos ambientes, podendo estar em 
suspensão ou depositados com a poeira em várias superfícies, entre elas e as mucosas do 
homem. O meio aquático foi, provavelmente, o ambiente primordial para os diversos 
microrganismos, os quais se diversificam e colonizaram outros ambientes. Nas partículas 
de poeira, os microrganismos estão presentes em grandes quantidades e, portanto, são 
passíveis de entrar em nosso organismo através de diversos mecanismos. Os 
microrganismos presentes no ar depositam-se na superfície de nosso corpo, cabelos, pele e 
mucosas, bem como nos alimentos e bebidas. 
 Vivemos, portanto, em completa interação com os microrganismos e precisamos 
aprender a conviver com eles. Felizmente, a maioria das espécies microbianas é benéfica ou 
inócua e uma baixa proporção de microrganismos causa prejuízos ao homem. 
 As atividades no laboratório de microbiologia consistem no isolamento, 
conservação e manipulação de culturas de microrganismos A prática asséptica é de 
fundamental importância para prevenir que microrganismos contaminantes venham a 
crescer nos meios artificiais de estudo. Através de técnicas simples, é possível demonstrar a 
presença de microrganismos em diversos locais do ambiente onde nos encontramos. 
 
2 Objetivos 
 Reconhecer materiais, equipamentos e normas do laboratório de microbiologia 
 Averiguar a presença de microrganismos no ambiente de trabalho, na pele. 
 Averiguar o efeito da higienização das mãos 
 
3 Procedimentos: verificação de contaminação ambiental 
 
 
 
24 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
3.1 Ar 
 Expor uma placa de Petri contendo o meio de cultura (ágar nutriente): 
 Manter a placa aberta durante 15 minutos. 
 
3.2 Pele 
 Tocar os dedos ou expor ao contato de materiais como fio de cabelo, solo etc. 
 
3.3 Respiração 
 Falar ou tossir sobre o meio de cultura. 
 
3.4 Importante: 
 Manter uma placa sem exposição ao ambiente, como testemunha. 
 Identificar as placas, anotando na tampa o tipo de exposição a que foram 
submetidas, data, nome do aluno, turma e disciplina. 
 Incubar as placas na posição invertida à temperatura de 35ºC durante 48 horas. 
 Avaliar a presença de colônias, sua abundância e diversidade. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
AULA PRÁTICA Nº 3 
OBSERVAÇÕES E PREPARAÇÕES MICROSCÓPICAS 
 
1 Microscopia 
 
A Microbiologia pode ser definida como o estudo de organismos muito pequenos 
para serem vistos claramente e individualizado pelo olho humano sem nenhuma ajuda. Para 
visualização de microrganismos, necessita-sede aumentos, os quais são conseguidos com o 
uso de um microscópio. O termo microscópio deriva do latim, micro, que significa 
pequeno; e, do grego Skopos, que significa olhar. 
O microscópio rotineiramente utilizado no laboratório é o microscópio óptico 
composto. Seu princípio de funcionamento baseia-se no aumento da imagem por um 
conjunto de lentes convergentes, associado a uma forte iluminação do campo de 
observação, fornecendo uma imagem translúcida dos microrganismos. 
O microscópio desse tipo é utilizado na microscopia de campo claro. Ele permite 
um aumento útil de aproximadamente mil vezes, e a maioria é equipada com quatro 
objetivas: a objetiva de imersão e objetivas a seco, sendo uma de grande, outra de médio e a 
última de pequeno aumento. A essas objetivas são suplementadas as oculares que, em geral, 
fornecem aumento de dez vezes. O aumento total fornecido pelo microscópio é obtido pela 
multiplicação do poder de aumento da objetiva pelo poder de aumento da ocular. Com o 
uso de oculares mais potentes, o aumento total pode ser ampliado de duas a três vezes. 
 Contudo, o aumento de mil a duas mil vezes é o limite da ampliação útil obtido 
como microscópio óptico. A limitação não é uma questão de aumento, mas do poder de 
resolução, ou seja, da capacidade de distinguir e separar dois pontos adjacentes. O poder de 
resolução é função do comprimento de onda da luz utilizada e da abertura numérica, que é 
uma característica do sistema de lentes utilizado. O limite de máxima resolução é obtido 
com o menor comprimento de onda da luz visível e com a objetiva de maior abertura 
numérica. 
 
 
 
26 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
1.2 Partes do Microscópio 
 
 O microscópio óptico é constituído de um sistema de lentes e de um suporte 
mecânico, cada um dos quais apresentando várias partes: 
 
I. Pé ou base: parte que sustenta todo o aparelho; 
II. Corpo ou braço: peça que faz a ligação entre o pé e a parte superior do aparelho; 
III. Platina: dispositivo retangular localizado paralelamente à base, destinado à recepção 
da lâmina, o qual uma perfuração central para dar passagem à luz; 
IV. Charriot: conjuntos de parafusos destinados à movimentação da lâmina no plano 
horizontal; 
V. Fonte de luz: lâmpada localizada na base do aparelho; 
VI. Filtro: placa de vidro colorida que pode ser encaixada sobre a fonte de luz para 
torná-la mais apropriada à observação do material; 
VII. Diafragma ou íris: dispositivo localizado acima do filtro para controlar a intensidade 
do feixe de luz que atinge o orifício da platina. 
VIII. Condensador: Conjunto de lentes localizado logo abaixo da platina, o qual serve 
para concentrar e tornar paralelo o feixe de luz, fornecendo a iluminação necessária 
e uniforme do objeto em estudo; 
IX. Parafuso do condensador: Localizado na lateral do braço, serve para controlar a 
posição do condensador; 
X. Revólver: peça circular na qual se inserem as objetivas, as quais podem ser trocadas 
através da rotação; 
XI. Objetivas: Os microscópios mais comuns possuem quatro objetivas, que 
proporcionem aumento de quatro, dez, quarenta e cem vezes; 
XII. Canhão: parte superior do microscópio onde são encaixadas as lentes oculares; 
XIII. Lentes Oculares: Lente superior do microscópio que se encaixa no canhão é através 
delas que o observador olha. A ocular geralmente produz aumentos de 10 vezes, 
entretanto, existem oculares de 5 e 15 aumentos; 
XIV. Parafuso macrométrico: parafuso situado na lateral do microscópio, que permite 
grandes avanços ou recuos da platina em relação à objetiva; 
27 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
XV. Parafuso micrométrico: geralmente encaixado sobre o parafuso macrométrico, de 
menor diâmetro, que permite pequenos avanços ou recuo da platina( ajuste fino); 
XVI. Trava: alavanca que fixa o movimento do parafuso macrométrico em uma 
determinada posição, impedindo a movimentação ascendente da palatina, 
protegendo as objetivas contra possíveis choques e a quebra de lâminas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 Preparações Microscópicas 
 
A perfeita visualização dos microrganismos e/ou de suas estruturas só é possível se, 
além da escolha do tipo mais eficiente de microscopia, a preparação estiver adequada. A 
escolha do tipo de preparação depende da informação desejada e do microrganismo a ser 
avaliado. Duas técnicas gerais são empregadas: a fresco e Fixados e corados. 
 
 
28 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
2.1 A fresco 
As preparações deste tipo permitem o exame de organismos nas condições “ 
normais” de vida. 
 
2.2 Fixados e corados 
As preparações fixadas e coradas são usadas para verificar as características 
morfológicas dos microrganismos, sendo bastante utilizadas na identificação, pois tornam 
mais fácil a visualização das formas e permitem a verificação do comportamento tintorial 
do organismo em relação às colorações diferenciais. As etapas dessas preparações são: 
 Preparo do esfregaço; 
 Fixação; 
 Coloração 
 
2.2.1 Preparo e fixação de esfregaço 
A preparação inicial do esfregaço do tipo de cultura disponível. Ele é constituído de 
uma camada muito fina de material sobre a lâmina e deve ser secado ao ar. A fixação do 
material na lâmina pode ser feita pela ação do calor, álcool, formol, ácido acético e outros 
produtos, e destina-se a imobilizar os constituintes celulares, fixando o esfregaço na lâmina, 
através de precipitação ou coagulação do material protéico. 
 
3 Objetivo 
 Identificar as diferentes partes do microscópio e manuseá-lo adequadamente; 
 Aprender a focalizar preparados no microscópio; 
 Compreender o princípio do funcionamento do microscópio óptico composto; 
 Aprender a utilizar a técnica de preparação microscópica a fresco entre lâmina e 
lamínula. 
 Preparar e fixar esfregaços de culturas em meios sólidos e líquidos. 
 
4 Materiais 
 Cultura de microalgas em meio líquido 
 Lâminas para microscopia 
29 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
 Alça de platina 
 Microscópio óptico 
 Óleo de imersão 
 Bico de Bunsen 
 
5 Procedimentos Para Preparação a Fresco 
 
I. Coloca-se uma ou duas gotas no centro da lâmina de cultivo de microalgas, 
recobrindo-se em seguida com uma lamínula e levando-se ao microscópio para a 
focalização; 
II. Coloca-se a lâmina preparada a fresco sobre a platina, fixá-la e, com o auxílio do 
charriot, ajustar o campo a ser observado sobre a abertura que existe na platina; 
III. Focalizar, com o auxílio do macrométrico, aproximando a objetiva de menor 
aumento o máximo possível da lâmina. Observa-se, através da ocular, a imagem 
obtida e, a partir deste ponto, usa-se o macrométrico afastando-se a objetiva da 
lâmina até a observação da imagem procurada. Em seguida, usa-se o micrométrico 
para focalizar e obter melhor nitidez da imagem. Necessitando-se de um aumento 
maior, gira-se o revólver para a objetiva seguinte e torna-se a focalizar com 
micrométrico, e assim sucessivamente. 
IV. Para observar a preparação com objetiva de imersão, colocar uma gota de óleo de 
cedro sobre a lâmina e girar o revolver para colocar a objetiva de imersão em foco; 
V. Olhando pelo lado, fazerdescer o canhão como parafuso macrométrico, até que a 
lente frontal da objetiva fique encostada no óleo de imersão; 
VI. Mover o parafuso micrométrico até conseguir uma boa focalização. 
30 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
 
Preparação de lâmina a fresco 
5.1 Procedimentos para preparo e fixação de esfregaço 
 
a) Culturas em meio líquido 
 Retirar uma gotícula da cultura com alça de platina esterilizada e colocar no centro 
da lâmina, tomando cuidado para não atingir as bordas. Esterilizar a alça de platina 
na chama. 
 Secar o esfregaço ao ar. 
 Fixar o esfregaço passando a lâmina, com o lado do esfregaço virado para cima, três 
vezes sobre a chama do bico de Bunsen. Após resfriamento, procede-se à coloração. 
 
b) Culturas em meio sólido Colocar uma gotícula esterilizada na lâmina. 
 Colocar uma gotícula de água esterilizada na lâmina; 
 Retirar uma pequena quantidade da cultura e misturar com á água; 
 Espalhar o material no centro da lâmina, tomando cuidado para não atingir as 
bordas. Esterilizar a alça de platina na chama. 
 Fixar o esfregaço passando a lâmina, com o lado do esfregaço virado para cima, três 
vezes sobre a chama do bico de Bunsen. 
 
 
31 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
AULA PRÁTICA Nº 4 
COLORAÇÃO DE GRAM 
 
1 Introdução 
 
As colorações podem ser simples (azul de metileno, Giemsa) ou diferenciais (Gram, 
Ziehl-Neelsen). As simples são efetuadas pela aplicação de um único corante, sendo as 
células geralmente coloridas de maneira uniforme. Nas diferenciais entre elas ou entre 
estruturas de uma mesma célula. 
A coloração com azul de metileno é utilizada principalmente na avaliação da 
morfologia, pois os danos causados à célula são menores devido ao menor número de 
manipulações. Ela é realizada colocando-se o corante sobre o esfregaço previamente 
fixado. Deixa-se corar por 3-5 minutos, escorre-se o corante, lava-se em água corrente e 
deixa-se secar para posterior observação ao microscópio. A coloração de Giemsa é utilizada 
em células que não possuem parede celular e a Ziehl- Neelsen para a identificação de 
microrganismos ácido- resistentes. 
 A Coloração de Gram é a técnica de coloração diferencial mais importante e mais 
utilizada em bacteriologia, foi introduzida pelo dinamarquês Hans Christian Joachim Gram, 
em 1884. É muito utilizado até hoje na sistemática bacteriana. Além das características 
morfológicas, este método permite evidenciar determinadas propriedades das bactérias, as 
quais são classificadas em Gram – positivas e Gram –negativas, de acordo com diferenças 
na composição e estrutura da parede celular. 
 
1.1 Finalidades da coloração de GRAM 
 
A parede celular de bactérias Gram- positivas é composta basicamente por 
peptídeoglicano, que constitui uma espessa camada ao redor da célula. Imersos nesta 
camada, podem estar presentes outros polímeros, como ácidos lipoteicóicos e 
polissacarídeos. Nas bactérias Gram – negativas o peptideoglicano constitui uma camada 
basal delgada, sobre a qual se encontra uma outra camada, composta por lipoproteínas, 
fosfolipídeos, proteínas e lipopossacarídeos, denominada membrana externa. A coloração 
32 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
de Gram consiste, basicamente, em tratar bactérias sucessivamente com cristal violeta, 
lugol, álcool e Safranina ou fucsina. O cristal violeta e o lugol penetram tanto nas bactérias 
Gram- positivas quanto nas Gram- negativas, formando um complexo de cor roxa. O 
tratamento com álcool é a etapa diferencial; nas Gram- positivas, o álcool não retira o 
complexo cristal violeta+ lugol, pois a sua ação desidradante faz com que a espessa camada 
de peptídeoglicano se torne menos permeável, retendo o corante. Nas Gram-negativas, 
devido à pequena espessura da camada de peptídeoglicano, o complexo corado é extraído 
pelo álcool, deixando as células descoradas. O tratamento com safranina ou fucsina não 
altera a cor roxa das Gram- positivas, ao passo que as Gram- negativas, descoradas pelo 
álcool tornam-se avermelhadas. 
 A diferença de comportamento das bactérias frente à coloração de Gram significa a 
existência de diferenças marcantes e fundamentais entre as bactérias Gram- positivas e 
negativas: 
 Na permeabilidade da parede celular; 
 Na composição química e estrutura bacteriana; 
 No metabolismo. 
 
Estas diferenças que refletem na patogenicidade. 
 
 
 Gram- Positiva Gram - Negativa 
 
 
2 Objetivo: 
 Discutir o mecanismo da reação de Gram; 
peptídeoglicano 
Membrana 
citoplasmática 
Membrana 
citoplásmatica 
Membrana 
externa 
Espaço 
periplásmatico 
33 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
 Familiarizar o estudante com as várias etapas da técnica de coloração; 
 Caracterizar as diferentes espécies bacterianas de acordo com sua reação à 
coloração de Gram. 
 
3 Material: Lâmina; Bico de Bunsen; Estufa; Microscópio; Cristal violeta; Lugol; 
Safranina e Álcool. 
 
4 Procedimento 
I. Lavar a lâmina com água e sabão e/ou álcool e éter. Secar a lâmina e verificar se 
toda gordura foi removida. 
II. Colocar uma ou duas gotas do liquido contendo a suspensão na lâmina. Espalhar 
sobre uma área de cerca de 1,5 cm de diâmetro. 
III. Deixar o esfregaço secar à temperatura ambiente ou em estufa. 
IV. Passar o esfregaço 3 vezes sobre a chama do bico de Bunsen para fixação do 
mesmo. 
V. Adicionar o Cristal violeta, aguardar 1 minuto. 
VI. Aplicar solução de Lugol esperar 60 segundos. Lavar com água. 
VII. Descorar com álcool absoluto até que todo o corante seja removido. 
VIII. Corar com Safranina esperar por 30 segundos. Lavar e secar. 
IX. Examinar ao microscópio com a objetiva de imersão. 
 
OBSERVAÇÕES: 
I. Quando o material a ser analisado for viscoso, deve-se proceder à diluição usando-
se uma gota de água destilada. 
II. A fixação do esfregaço faz-se necessária para manter o microrganismo aderido à 
lâmina. 
III. O Lugol é uma substancia mordente empregada com o objetivo de fixar o corante à 
célula. 
IV. O álcool é agente descorante que remove o corante de certas bactérias. 
V. Cultivos antigos de algumas bactérias Gram positivas podem perder a propriedade 
de reter o Cristal violeta, e, conseqüentemente, poderão se corar com a safranina. 
34 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
 
Gram – positiva (roxa) Gram – negativa (vermelha) 
____________________________________________________________ 
Exercício 
 
 Com os conhecimentos que você adquiriu, indique a coloração de cada tipo de célula 
bacteriana após o uso de cada reagente, durante o procedimento de coloração: 
PROCEDIMENTO GRAM + GRAM - 
Cristal de violeta 
Lugol 
Álcool 
Safranina 
 
Esquematizar os preparados observados: 
a)Bactérias Gram- positivas b) Bactérias Gram- negativas 
 
 
 
 
 
 
 
 
 
35 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.brProf
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
AULA PRÁTICA Nº 5 
PREPARO DE DILUIÇÃO 
 
1 Introdução 
 Para utilizar os métodos para efetuar a contagem de microrganismos geralmente 
utiliza-se diluição em série por ser difícil realizar a contagem de milhares ou centenas de 
colônias. Assim sendo, efetua-se a diluição da cultura que se pretende contar antes de 
plaquear (transferir) um volume conhecido de cultura para a placa sólida. 
 Para se fazer uma diluição em série, começa-se com organismos em meio líquido. 
Acrescentando 1 ml deste meio a 9ml de água diluição, cria-se uma diluição de 1:10; 
acrescentando 1 ml da diluição 1:10 a 9ml de água de diluição , cria-se uma diluição de 
1:100, e assim por diante. O número de bactérias por mililitro de fluido é reduzido em 9/10 
a cada diluição. 
 
IMPORTANTE: 
 Para se determinar o número de unidades formadoras de colônias na cultura 
original, deve-se multiplicar o número de colônias encontradas na placa pelo o fator de 
diluição; se esta for uma fração deve-se usar o denominador. Um fator de diluição de 1000 
seria expresso por 1:1000. 
 
2 Objetivo 
 Familiarizar o estudante coma técnica de diluição, para utilizar nas técnicas de 
contagem de microrganismos. 
 
3 Procedimento 
I. Preparar uma série de tubos estéries contendo 9 mL de liquido de diluição estéril. 
II. Com uma pipeta estéril, transferir 1 mL da amostra ao primeiro tubo contendo 9mL 
do liquido de diluição estéril, esta diluição é 1/10. Etiquetar o tubo com a diluição 
correspondente. 
III. Agitar a amostra energicamente para obter uma boa distribuição das bactérias na 
massa liquida. 
36 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
IV. Descartar a pipeta usada 
V. Usando nova pipeta estéril, transferir assepticamente 1 mL da diluição 1/10, esta é a 
diluição 1/100. Etiquetar o tubo. 
VI. Descartar a pipeta usada. 
VII. Agitar o tubo de diluição 1/100 
VIII. Usando nova pipeta estéril, transferir assepticamente 1 mL da diluição 1/100 a outro 
tubo de diluição com 9 mL diluição, esta é a diluição 1/1000. Etiquetar o tubo. 
IX. Da mesma forma, segue-se preparando maiores diluições 1/10.000; 1/100,000 
quantas forem precisas. 
 
3.1 Líquido de Diluição 
Utilizar solução Ringer diluída a ¼. A composição é a seguinte 
 Cloreto de sódio 9,0 g 
 Cloreto de potássio 0,42 g 
 Cloreto de cálcio anidro 0,24 g 
 Bicarbonato de sódio 0,20 g 
 Água destilada 1000 mL 
 Antes do uso, selecionar parte da solução acima à três partes da água destilada. O 
líquido de diluição deve ser acondicionado em garrafas apropriadas que contenham 99; 90 
ou 9mL após esterilização. 
 
OBSERVAÇÕES 
 Todo material usado deve ser esterilizado. 
 Em cada diluição, deve-se descartar a pipeta usada. O uso da mesma pipeta no 
preparo de duas diluições consecutivas implica incorporar à diluição maior, 
bactérias provenientes de diluição anterior que, por exemplo ficaram nas pipetas. O 
erro assim causado é altamente significativo e a contagem final não terá validade. 
37 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
 
 
 
 
 
38 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
AULA PRÁTICA Nº 6 
CONTAGEM DE MICRORGANISMOS EM PLACAS 
 
1 Técnicas de contagem 
 
 O crescimento de microrganismo é medido através da estimativa do número de 
células que foram geradas por divisão binária durante uma fase de crescimento. Esta 
medida é expressa como o número de organismos viáveis (vivos) por militro de cultura. 
Existem vários métodos para contagem de microrganismos que são aplicados nas analises de 
alimentos e em analises de água. 
 
1.1 Contagem direta ou microscópica 
 Com a ajuda de uma câmara de contagem são contados o numero de células 
existentes em um determinado volume do material. Um exemplo é o método de Breed 
utilizado freqüentemente na analise de leite cru e que preconiza a contagem do numero de 
células em vários campos microscópicos na quantidade de amostra. Através da relação 
existente entre a área do estendido e a área do campo microscópico é possível se calcular o 
numero de bactérias por mL. 
 
1.2 Contagem metabólica 
 Método baseado no aproveitamento de uma dada atividade metabólica especifica 
das bactérias sobre um dado substrato. Por exemplo: a prova de redução do azul de 
metileno que é também praticada na análise do leite cru. 
 
1.3 Contagem de microrganismos viáveis em placa 
 Semeaduras de material contaminado em placa (pour-plate ou superfície) 
respeitando as condições ótimas do microrganismo que se procura, isto é, meio de cultura 
adequado, temperatura, oxigênio e tempo necessário para favorece seu crescimento e 
permitir ao final, a contagem das colônias formadas. 
 
 
39 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
1.4 Semeadura em placas 
 O método de contagem de microrganismos em placas é um método geral, que pode 
ser utilizado tanto para a contagem de grandes grupos microbianos, como os aeróbios 
mesófilos, os aeróbios psicrotróficos, os bolores e leveduras e os clostrídios sulfitos 
redutores, como também para a contagem de gêneros e espécies em particular como 
Staphylococcus aureus, Bacillus cereus e Clostridium perfringens, por exemplo. Esta 
versatilidade é decorrente do principio do método que se baseia na premissa de que cada 
célula microbiana presente em uma amostra irá formar, quando fixada em um meio de 
cultura sólido adequado, uma colônia visível e isolada. Variando o tipo de meio (meio de 
enriquecimento, meio seletivo, meio diferencial) e as condições de incubação ( temperatura 
e necessidade de oxigênio), é possível selecionar o grupo, gênero ou espécie que se deseja 
contar. Como as células microbianas muitas vezes ocorrem em agrupamentos (pares, 
tétrades, cachos, cadeias, etc), não é possível estabelecer uma relação direta entre o numero 
de colônias e o numero de células. A relação correta é feita entre o numero de “Unidades 
Formadoras de Colônias” (UFC), que podem ser tanto células individuais como 
agrupamentos característicos de certos microrganismos. 
 
1.4.1 Semeadura em profundidade ou pour-plate 
 Consiste em colocar 1,0 ou 0,1 mL do material, objeto de exame nas placas, agrega-
se 15-20 mL do meio de cultura fundido e resfriado a temperatura de ± 45ºC agitando-se 
com movimentos rotativos por pelo menos 5 vezes, nos dois sentidos, isto é, a favor dos 
ponteiros do relógio e contra os mesmos. As placas assim preparadas devem ser incubadas 
a temperatura e condições recomendadas pelo método e classe de contagem realizada. 
Incubar as placas invertidas e após incubação proceder à contagem das mesmas com ajuda 
de um contador de colônias. Trabalhar sempre com 2 placas para cada diluição. 
 
1.4.2 Semeadura em superfície 
 Consiste em distribuir o meio de cultura a se trabalhar em prepara placas (15-20 
mL) esperar solidificar e uma vez preparada as diluições semeia-se 0,1 mL das diluições 
escolhidas utilizando-se também duas placas para cada diluição. Estender toda alíquota 
semeada com uma alça de Drigalski. Ressalte-se que o Agar preparado e distribuído nas 
40 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio– isannamenezes@hotmail.com 
 
placas para este procedimento deve ser usado imediatamente ou no máximo em 24 horas. 
Para contagem procede-se da mesma forma do método anterior. 
 
1.4.3 Semeadura por gota (em superfície) 
 Após preparar o meio e distribuí-lo em placas, esperar solidificar e dividir a placa 
em 3 segmentos iguais conforme desenho abaixo: 
Em seguida, utilizando-se de uma pipeta especialmente calibrada, depositar 2 gotas (0,04 
mL) de cada diluição sobre a superfície do meio. Desta forma logramos semear 6 diluições 
com o uso de apenas duas placas. 
 
1.4.4 Técnica da membrana filtrante 
 Baseia-se na filtração de um volume conhecido da amostra, através de uma 
membrana estéril de poros de 0,45mm de diâmetro, que retém os microrganismos. Após a 
filtração, a membrana é transferida para uma placa de Petri contendo meio de cultura 
adequado e incubado a temperatura, oxigênio e tempo necessário para favorece seu 
crescimento e permitir ao final, a contagem das colônias formadas. A filtração é feita em 
um aparelho que consta de funil com tampa (para preservar a esterilidade da amostra), 
suporte de membrana e frasco receptor. O frasco receptor conecta-se a uma bomba de 
vácuo, o funil é esterilizado por água fervura em água destilada durante 5 minutos. 
 
Vantagens da técnica 
 Permite a filtração de grandes volumes de amostra. É ideal para amostra que 
contenham de 1 a 2 bactérias por litro. 
 Períodos de incubação mais curtos 
 É fácil de se utilizar, permitindo análise de um numero grande de amostra em pouco 
tempo. 
 Apresenta alta precisão e reprodutibilidade. 
Desvantagem 
 Alto custo da membrana 
 As membranas ficam entupidas com amostras que possuam abundantes materiais 
em suspensão. 
41 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
 
2 Objetivo: 
 Familiarizar o estudante com uma das técnicas de contagem, para avaliação do 
crescimento de bactérias. 
 
3 Procedimento: 
 
A) Contagem em superfície 
I. Preparar diluições decimais da cultura transferindo1 ml para o tubo contendo 9ml de 
água de diluição, diluição de fator 10 (concentração 1:10 ou1/10) 
II. Homogeneizar a suspensão. 
III. Transferir, a partir da diluição anterior, 1 ml para outro tubo contendo 9 ml de água 
de diluição, homogeneizar a suspensão, e assim sucessivamente, de modo a obter as 
diluições: 10
2
; 10
3
;10
4
;10
5
;10
6
;10
7
. 
IV. Colocar o meio de cultura nas placas e deixar solidificar; 
V. Identificar as placas marcando o nome, turma, data, diluição (105;106;107) e 
repetição (I, II e III); 
VI. Inocular as placas, previamente identificadas com 1ml das respectivas diluições; 
VII. Espalhar rapidamente líquido, com alça de Drigalski, até que este seja absorvido 
pelo meio. 
VIII. Colocar as alças em solução desinfetante; 
IX. Incubar as placas na posição invertida à temperatura adequada no mínimo 24 horas. 
X. Escolher a diluição cujas placas apresentem de 30 a 300colônias. 
XI. Proceder a contagem das colônias; 
XII. Calcular o número de bactérias ( UFC – unidades formadoras de colônias) /ml da 
cultura original utilizando a seguinte fórmula. 
XIII. Nº de bactérias ( UFC)/mL = média do nº de colônias x fator de diluição 
 
 
 
 
42 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
B) Contagem pelo método pour plate 
I. Preparar as diluições e identificar as placas conforme descritos no procedimento de 
contagem “em superfície”. 
II. Inocular as placas com 1 ml das respectivas diluições. 
III. Verter o meio de cultura a ±50ºC e misturar realizando movimento de rotação no 
sentido horário e no sentindo anti- horário durante alguns segundos. 
IV. Deixar solidificar. 
V. Incubar as placas na posição invertida à temperatura adequada durante no mínimo 
24 horas. 
VI. Escolher a diluição cujas placas apresentem de 30 a 300 colônias. 
VII. Proceder a contagem das colônias. 
VIII. Calcular o número de bactérias (UFC)/mL da cultura original utilizando a seguinte 
fórmula: 
IX. Nº de bactérias ( UFC)/mL = média do nº de colônias x fator de diluição 
 
 
 
 
 
 
43 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
Esquema de contagem em placa 
Repetições Diluição utilizada Contagem 
1 
2 
3 
Média = 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
II UNIDADE TEMÁTICA 
 
AULA PRÁTICA Nº 7 
ANÁLISE MICROBIOLOGICA DE ÁGUA – TÉCNICA DOS TUBOS 
MÚLTIPLOS 
 
1 Número mais provável – tubos mais provável /NMP 
 Neste método em um meio de cultura liquido, a partir de uma amostra 
representativa, se colocam varias series de diluições (série de 3 ou 5 tubos) paralelas e 
observar o crescimento bacteriano. Este se manifesta através de turbidez e gás evidenciado 
nos tubos de Durham colocados previamente dentro dos tubos de ensaios. Assim os tubos 
devem ser incubados a temperatura e condições recomendadas pelo método. Após 
incubação a partir dos tubos onde houve crescimento evidenciado pela presença de turbidez 
e/ou gás se determina o numero mais provável (NMP) consultando a tabela de McCrady 
onde este número estará referido como sendo N.M.P./100ml ou grama da amostra 
analisada. 
 
2 Coleta de Amostras 
 
 As águas a serem coletadas para o exame bacteriológico devem ser colhidas com 
esterilidade e em pontos representativos da planta de tratamento, do sistema de distribuição 
ou do manancial. A análise deve ser feita através dos métodos padrões a fim de poder 
comparar os resultados obtidos em diferentes épocas e em diferentes regiões. 
 
2.1 Frascos de Coleta 
 Deve-se utilizar frascos escuros com tampas de boca larga e capacidade mínima de 
120 mL. O frasco será esterilizado, com tiossulfato de sódio (100mg de tiossulfato por 1 
litro de água), se é destinado à água clorada ou sem tiossulfato para outros tipo de água. A 
tampa e o gargalo do frasco devem ser protegidos com papel tipo Kraft ou papel alumínio. 
 
2.3 Coleta de Amostra de Torneira 
45 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
 Não deve fazer coletas em torneiras com vazamento. Abre-se a torneira, deixa-se 
correr a água para eliminar a que ficou retida na tubulação. Fecha-se, seca-se com um pano 
limpo. Esteriliza-se a torneira com um cotonete grosso de algodão embebido em álcool e 
aceso. Abre-se novamente a torneira deixa-se sair um pouco de água. Abre o frasco, enche 
deixando 2 cm de ar para poder agitar a amostra antes da análise. Fecha o frasco e a 
torneira. 
 
2.4 Coleta de Amostra de Piscina 
 Recomenda-se coletar água da superfície e a 30 cm de profundidade. Na superfície 
forma-se um filme de gorduras proveniente do corpo do banhista, e o número de bactérias é 
maior e não necessariamente representativo da massa de água restante. O frasco deve conter 
tiossulfato e as coletas deverão ser feitas na hora de maior concorrência. 
 
2.5 Coleta de Amostra de Rios, Lagos, etc. 
 O ponto de amostragem dependerá do que se deseje pesquisar. Em reservatórios 
naturais utilizados como fonte de água potável, os pontos de coletaserão próximo ao ponto 
de captação e na mesma profundidade que este. 
 Não devem coletar-se amostra nas bordas dos reservatórios, rios, etc, porque nesta 
região a água é mais poluída e há acúmulos de matéria orgânica e crescimento de plantas e 
insetos o que eleva o teor bacteriológico e o resultado não seria representativo. 
 
2.6 Balneários 
 Os pontos de coleta são os lugares mais concorridos; amostras devem ser tomadas 
na hora de pico, a freqüência de coleta será aumentada na época de chuva. 
 Todos os fracos com amostras devem ser etiquetados com data, hora lugar e 
profundidade da coleta. Outros parâmetros que são úteis na analise dos resultados são 
temperatura da água no momento da coleta e pH. 
 Às vezes precisa-se de barcos, frascos para coleta em profundidade, etc. Para 
mergulhar frascos em rios, lagos etc, passa-se arame pelo gargalo, deixando-se um extremo 
comprido, sustenta-se a garrafa pela base e coloca-se na água e se mexe em contra-corrente 
desde o extremo do arame. 
46 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
2.7 Conservação da Amostra 
 As amostras devem chegar ao laboratório sem modificação de sua população 
bacteriana. A situação ideal é proceder nas amostras 2 horas seguintes à coleta. Quando não 
é possível, deve-se conservar em isopor com gelo para manter a temperatura inferior a 
10ºC. Nestas condições a amostra se preserva durante 6 horas e deve ser processada nas 2 
horas seguintes (ou seja, em um total de 8 horas após a coleta). 
 
3 Procedimento das Análises: 
 
3.1 Ensaio Presuntivo 
I. Semear três series de 5 tubos, utilizando 10mL;1mL e 0,1mL em caldo lactosado 
(CL) ou caldo lauril triptose (CLT), contendo tubos de fermentação (Duhan) 
invertido. Para inoculações das porções de 10 mL da amostra, usar o CL ou o CLT 
em concentração dupla. 
II. Identificar os tubos anotando a amostra a data e as porções da amostra. Identificar 
também os frascos de diluição. 
III. Homogeneizar a amostra 
IV. Preparo de diluições: Com uma pipeta estéril de 1 mL e obedecendo aos cuidados 
de assepsia, transferir 1 mL da amostra para um frasco contendo 9 mL do liquido de 
diluição, antecipadamente identificado. Prepara-se assim, a primeira diluição 
decimal (10
-1
), sendo que 1 mL da mesma corresponde a 0,1mL da amostra. 
Homogeneizar. 
V. Com uma pipeta estéril transferir 10 mL da amostra para os 5 tubos da primeira 
serie contendo o meio CL ou CLT de concentração duplo. Desprezar a pipeta, 
homogeneizar os frascos. 
VI. Com uma pipeta estéril transferir 1 mL da amostra para os 5 tubos da segunda serie 
contendo o meio CL ou CLT. Desprezar a pipeta, homogeneizar os frascos. 
VII. Com uma pipeta estéril transferir 1 mL da diluição 10-1 para os 5 tubos da terceira 
serie contendo o meio CL ou CLT. Desprezar a pipeta, homogeneizar os frascos. 
VIII. Colocar a estante contendo os tubos inoculados na estufa a 35ºC durante 24-48 
horas. 
47 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
IX. Após esse período de incubação, retirar os tubos da estufa para efetuar a primeira 
leitura dos resultados. Para isso, agitar cada tubo e verificar a presença de turbidez 
e/ou gás nos tubos. Descartar os tubos negativos. 
 
3.1.1 Ensaio Confirmativo para Coliformes a 35ºC 
 O ensaio confirmativo é efetuado utilizando-se o caldo lactosado verde bile 
brilhante 2% (CLVBB) para determinação de coliformes totais e caldo EC para coliformes 
termotolerante. 
I. Identificar os tubos de CLVBB, contendo tubos de Duhan invertido, correspondente 
respectivamente a cada tubo de CL ou CLT com resultado presuntivo positivo. 
II. Agitar bem o tubo de CL ou CLT com resultado presuntivo positivo e, com uma 
haste de madeira ou alça de platina, repicar o material e inocular no tubo 
correspondente de CLVBB. Agitar. 
III. Incubar os tubos de CLVBB inoculados, durante 24-48 horas a 35ºC. 
IV. Proceder a leitura após o tempo de incubação, considerando como teste 
confirmativo para coliformes totais todos os tubos que apresentarem gás nos tubos 
de Duhan invertido com ou sem turbidez. Anotar os resultados e verificar o NMP de 
coliformes totais na tabela em anexo. 
EXEMPLO: 
TUBOS 1 2 3 4 5 TUBOS + 
10 mL + + - - - 2 
1 Ml + - - - + 2 
0,1mL (10
-1
) - - - - - 0 
 
De acordo com a tabela o NMP de CT = 21g/100mL 
 
3.1.2 Diferenciação para Termotolerantes 
 Esta diferenciação, feita a partir dos tubos positivos de CL ou CLT. 
I. Identificar os tubos com caldo EC, contendo tubos de Duhan invertido, 
correspondente respectivamente a cada tubo de CLVBB com resultado presuntivo 
positivo. 
48 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
II. Agitar bem o tubo de CLVBB com resultado presuntivo positivo e, com uma haste 
de madeira ou alça de platina, repicar o material e inocular no tubo correspondente 
de caldo EC. Agitar. 
III. Incubar os tubos de caldo EC inoculados, durante 24 horas a 44,5ºC. 
IV. Proceder a leitura após o tempo de incubação, considerando como teste 
confirmativo para coliformes termotolerantes todos os tubos que apresentarem gás 
nos tubos de Duhan invertido com ou sem turbidez. Anotar os resultados e verificar 
o NMP de coliformes termotolerantes na tabela em anexo. 
V. Se a finalidade do ensaio for o exame completo, prosseguir a partir dos tubos 
CLVBB com resultado positivo no ensaio confirmativo. 
 
3.1.3 Ensaio Completo (Opcional) 
I. Identificar placas contendo o meio solidificado Agar eosina azul de metileno 
(EAM), correspondendo a cada uma, a um tubo de CLVBB com resultado positivo. 
II. Flambar e resfriar uma alça de platina. 
III. Agitar e inclinar o tubo de CLVBB e mergulhar a extremidade da alça de platina no 
liquido do tubo a uma profundidade de, aproximadamente, 1 cm. 
IV. Depositar o inóculo em um ponto das bordas da placa de Agar EAM, gira-la e 
iniciar seu espalhamento na superfície do primeiro quadrante, tomando cuidado para 
que a parte encurvada da alça toque apenas a superfície do meio, evitando racha-lo. 
V. Girar novamente a placa e continuar o espalhamento no segundo quadrante. 
VI. Proceder dessa maneira ate completar a semeadura em toda superfície do Agar. 
VII. Fechar e incubar a placa em posição invertida durante 24 horas a 35ºC. 
VIII. Após o período de incubação, efetuar a leitura, considerando as colônias típicas de 
coliformes as colônias nucleadas, com ou sem brilho metálico. 
IX. Considerar como colônias atípicas de coliformes as colônias rosas, mucoides, 
opacas e sem núcleo e, como colônias negativas, todos os outros tipos de colônias. 
 
3.2 Contagem total de microrganismos heterótrofos aeróbios 
Meio de cultura: Agar padrão para contagem(APC) 
 
49 
 
Prof.
a 
Dra. Eliane Rolim Florentino – elianerf@yahoo.com.br 
Prof
a
 Dra. Isanna Menezes Florêncio – isannamenezes@hotmail.com 
 
I. Pipetar assepticamente porções de 1mL das diluições selecionadas, transferindo-as 
para as placas de Petri devidamente identificadas. Semear em duplicatas, utilizando 
no mínimo duas diluições diferentes. Adicionar a cada placa aproximadamente 
15mL do meio previamente fundido. 
II. O espaço de tempo decorrido entre a semeadura e a adição do meio não deve 
utrapassar a 20 minutos. 
III. Homogeneizar cuidadosamente, em movimento de vai-vem, sentido horário e ante-
horário. 
IV. Como prova de esterilidade, adicionar 15mL do meio previamente

Continue navegando