Buscar

Capítulo 7 - Espectrometria de emissão atômica

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 27 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 27 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 27 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Capítulo 7 
 
 
 
 
 
 
 
Espectrometria de Emissão Atômica 
 
 
 
 
 
 
 
 
 
 
 248
Capítulo 7 – Espectrometria de emissão atômica 
 
7.1 - ESPECTROMETRIA DE EMISSÃO POR CHAMA 
���� Baseada na emissão de radiação por átomos ou íons isolados excitados por chama 
•••• Principal aplicação ⇒⇒⇒⇒ determinação de metais alcalinos (Na, K, Li) e alcalino-terrosos 
em fluidos e tecidos biológicos 
 
7.1.1- INSTRUMENTAÇÃO 
���� Equipamentos similares aos empregados em AAS, exceto que a chama atua também 
como fonte de radiação (não é necessário LCO e chopper) 
•••• Espectrofotômetro UV/VIS com resolução 0,5Å 
- registrador associado para facilitar correção de background 
•••• Fotômetro de filtro ⇒⇒⇒⇒ análises rotineiras para metais alcalinos e alcalino-terrosos 
- chama de baixa temperatura para evitar excitação de outros elementos que 
estejam presentes 
- uso de filtros de interferência para isolar a linha analítica desejada 
 
 
Figura 7.1 – Representação esquemática de um fotômetro de chama 
automático para análise simultânea de Na e K no soro sangüíneo 
 249
Capítulo 7 – Espectrometria de emissão atômica 
 
•••• Instrumentos para análise simultânea de vários elementos 
∗∗∗∗monocromador controlado por computador 
- medida rápida e seqüencial da potência radiante em diversos comprimentos de 
onda correspondentes aos picos dos diferentes elementos presentes na 
amostra 
- determinação de ± 10 elementos por minuto 
∗∗∗∗instrumento com fotodetector multicanal 
- detectores fotossensíveis arranjados de modo que todos os elementos de um 
feixe de radiação disperso por uma rede de difração possam ser medidos 
simultaneamente 
Ex: 
Tubo detector vidicon de Si montado no plano ótico originalmente ocupado pela 
fenda de saída do monocromador ⇒⇒⇒⇒ monitorar banda de 20 nm ⇒⇒⇒⇒ ajuste do tubo no 
plano focal várias bandas de 20 nm são monitoradas ⇒⇒⇒⇒ resolução 1,4Å 
 
 
Figura 7.2 – Espectro de emissão por chama multielementar no intervalo de 388,6 a 
408,6 nm 
 250
Capítulo 7 – Espectrometria de emissão atômica 
 
7.1.2 – INTERFERÊNCIAS 
���� mesmas da AAS 
7.1.2.1 - Interferências espectrais 
•••• picos não resolvidos 
 
Figura 7.3 – Espectro de emissão por chama de uma amostra contendo 600ppm de 
Fe, 600ppm de Ni e 200ppm de Cr. 
 
••••AAS ⇒⇒⇒⇒ só interferem linhas separadas por 0,1Å ou menos 
- alta especificidade espectral →→→→ resulta das linhas estreitas da fonte e não de 
alta resolução do monocromador 
••••AES ⇒⇒⇒⇒ qualidade do monocromador →→→→ determinar a possibilidade de interferências 
 251
Capítulo 7 – Espectrometria de emissão atômica 
 
7.1.2.2 - Interferência por bandas de emissão e correção de fundo 
•••• Linhas de emissão sobrepostas às bandas de emissão dos óxidos ou de outras 
espécies moleculares presentes na amostra ou derivadas do combustível ou do 
oxidante 
 
Figura 7.4 – Espectro de emissão por chama de uma amostra de água do mar 
mostrando a correção para emissão de fundo 
 
•••• Correção →→→→ varredura alguns nm antes e alguns nm depois do pico de trabalho 
 
7.1.2.3 - Interferências química 
•••• Mesmas encontradas em AAS 
 
•••• Métodos de correção 
- chama com temperatura mais elevada 
- agentes libertadores 
- agentes complexantes 
- supressores de ionização 
 252
Capítulo 7 – Espectrometria de emissão atômica 
 
7.1.2.4 - Auto-absorção 
•••• Afeta mais o centro da linha que as extremidades 
•••• Chama 
- Centro →→→→ mais quente →→→→ átomos excitados emitindo 
- Bordas →→→→ mais frias →→→→ menor concentração de átomos excitados →→→→ 
absorvem a radiação emitida 
•••• Alargamento Doppler da linha de emissão é maior que o da de absorção →→→→ auto 
absorção tende a alterar mais o centro da linha que as extremidades 
↓↓↓↓ 
Situação extrema →→→→ centro menos intenso que as bordas ou mesmo 
desaparece →→→→ divisão do pico de emissão em dois 
↓↓↓↓ 
Problema quando a concentração do elemento é elevada →→→→ uso de uma 
linha que não seja de ressonância para a análise 
 
Figura 7.5 – Curva A ilustra a auto-absorção que ocorre com concentrações 
elevadas de Mg (2000 ppm). Curva B mostra o espectro normal (100 ppm de Mg) 
 253
Capítulo 7 – Espectrometria de emissão atômica 
 
 
Figura 7.6 – Efeito da ionização e da auto absorção na curva analítica do potássio 
 
7.1.3 - TÉCNICAS ANALÍTICAS 
•••• Curva de calibração 
•••• Adição de padrão 
 
 
7.1.4 - COMPARAÇÃO ENTRE AAS E AES 
���� Instrumentos 
•••• AES 
- chama = fonte 
- monocromador excelente qualidade para garantir a resolução adequada 
•••• AAS 
- uma lâmpada para cada elemento 
- qualidade do monocromador não é crítica 
 
 254
Capítulo 7 – Espectrometria de emissão atômica 
 
���� Habilidade do operador 
•••• maior na AES 
-necessidade de ajuste rigoroso em λ, altura da chama e razão 
oxidante/combustível 
 
���� Correção de background 
•••• mais fácil e exata na AES 
 
���� Precisão e exatidão 
•••• Operador hábil ⇒⇒⇒⇒ duas técnicas são similares 
- incertezas – 0,5 – 1,0 % 
•••• Operador menos experiente ⇒⇒⇒⇒ AAS mais vantajosa 
 
���� Interferências 
•••• Interferências químicas ⇒⇒⇒⇒ similares nas duas técnicas 
•••• AAS menos sujeita a interferências espectrais, embora estas possam ser 
identificadas e corrigidas na AES 
 
���� Limites de detecção 
Tabela 7.1 - Comparação entre os limites de detecção 
Mais sensível AES Igual sensibilidade Mais sensível AAS 
Al, Ba, Ca, Eu, Ga, Ho, In, 
K, La, Li, Lu, Na, Nd, Pr, Rb, 
Re, Ru, Sm, Sr, Tb, Tl, Tm, 
W, Yb 
Cr, Cu, Dy, Er, Gd, Ge, Mo, 
Mn, Nd, Pd, Rh, Sc, Ta, Ti, 
V, Y, Zr 
Ag, As, Au, B, Be, Bi, Cd, 
Co, Fe, Hg, Ir, Mg, Ni, Pb, 
Pt, Sb, Se, Si, Sn, Te, Zn 
 
 
 
 255
Capítulo 7 – Espectrometria de emissão atômica 
 
7.2 - ESPECTROMETRIA DE EMISSÃO COM ATOMIZAÇÃO POR PLASMA, ARCO OU 
CENTELHA 
���� Baseada na emissão de radiação por átomos ou íons isolados excitados por plasma 
(ICP ou DCP), arco elétrico ou centelha elétrica. 
 
���� Vantagens sobre a atomização por chama: 
•••• menos interferências interelementos →→→→ T de atomização mais elevadas 
•••• numa dada condição de excitação, vários elementos originam espectros de emissão 
que podem ser empregado analiticamente →→→→ análise multielementar simultânea 
(chama →→→→ características específicas para cada elemento) 
•••• maior sensibilidade nas análises, inclusive para elementos que formam compostos 
refratários (óxidos de B, P, W, V, Zr, Nb) 
•••• ICP →→→→ análise de ametais Cl, Br, I, S 
•••• faixa de concentração analítica ampla 
 
���� Desvantagens: 
•••• espectros mais complexos →→→→ centenas ou milhares de linhas →→→→ possibilidade de 
interferências espectrais nas análises quantitativas 
•••• requerem instrumentos com resolução elevada e sistema ótico mais sofisticado 
 
7.2.1 – ESPECTROMETRIA DE EMISSÃO COM ATOMIZAÇÃO POR PLASMA 
���� Plasma →→→→ mistura gasosa que conduz corrente elétrica e é formada por uma 
quantidade significativa de cátions e elétrons ⇒⇒⇒⇒ carga total nula ⇒⇒⇒⇒ [cátions] = 
[elétrons] 
 
•••• Plasma mais comumente empregado ⇒⇒⇒⇒ Ar 
- Íons Ar+ formados no plasma absorvem energia de fonte externa →→→→ 
manutenção da temperatura em valores nos quais ionizações posteriores 
mantêm o plasma indefinidamente →→→→ T = 10000 K 
 256
Capítulo 7 – Espectrometria de emissão atômica 
 
•••• Três tipos de plasma 
- indutivamenteacoplado (ICP) * 
- corrente contínua (DCP) * 
- induzido por microondas (MIP) 
 
7.2.1.1 - Plasma indutivamente acoplado (ICP) 
•••• três tubos de quartzo concêntricos através dos quais flui corrente de Ar (5 – 20L/min) 
•••• envolvendo a extremidade do tubo externo →→→→ bobina de indução refrigerada a 
água alimentada por gerador de rádio freqüência (0,5 a 2 kW; 27 ou 41 MHz) 
•••• ionização do Ar →→→→ centelha gerada por uma bobina Tesla 
•••• interação dos íons e elétrons com campo magnético →→→→ fluxo em espiral 
•••• fluxo tangencial →→→→ isolamento térmico do tubo interno →→→→ plasma para o centro 
da tocha 
 
 
Figura 7.7 – Plasma indutivamente acoplado 
 
 
 257
Capítulo 7 – Espectrometria de emissão atômica 
 
7.2.1.1.1- Introdução da amostra no plasma 
(1) Nebulização 
•••• através do tubo central →→→→ carreada por Ar fluindo numa vazão de 0,3 a 1,5 L/min 
(sistema de nebulização similar ao do AAS e AES com atomização por chama) 
 
Figura 7.8 – Nebulizador para introdução da amostra no plasma 
 
(2) Atomização eletrotérmica 
•••• forno →→→→ utilização para introdução da amostra 
•••• amostra colocada no bastão de grafite →→→→ vaporização →→→→ fluxo de Ar carrear a 
amostra para a tocha 
•••• sinal transiente 
•••• permite introdução de quantidades pequenas de amostras 
•••• limites de detecção baixos 
•••• associado às vantagens do plasma 
- resposta linear em faixa ampla 
- ausência de interferências 
- análise multielementar 
 258
Capítulo 7 – Espectrometria de emissão atômica 
 
 
Figura 7.9 – Dispositivo para vaporização eletrotérmica 
 
7.2.1.1.2 - Espectro e aparência do plasma 
•••• núcleo central branco brilhante com luminosidade intensa 
•••• estende-se alguns milímetros acima da extremidade do tubo de quartzo 
•••• origina espectro contínuo ao qual se sobrepõe o espectro do argônio 
- espectro contínuo →→→→ recombinação de íons Ar+ e outros íons presentes com 
elétrons 
•••• parte superior →→→→ cauda similar à da chama 
•••• observações espectrais →→→→ alinhamento do detetor 15 a 20 mm acima da bobina de 
indução →→→→ sinal de fundo livre das linhas do Ar 
- muitas das linhas analíticas nesta região do plasma são de íons como Ca+, Ca2+, 
Cd+, Cr2+ e Mn2+ 
 
7.2.1.1.3 - Atomização da amostra e ionização 
•••• tempo de residência dos átomos na região de observação = 2 ms (T = 4000 – 8000K) 
 
 259
Capítulo 7 – Espectrometria de emissão atômica 
 
•••• vantagens: 
- atomização mais completa 
- menos problemas de interferências químicas 
∗∗∗∗ população de elétrons é alta → interferências de ionização são pequenas ou 
não existentes 
- atomização em ambiente inerte → previne formação de óxidos 
- temperatura uniforme 
- não ocorre auto-absorção 
- curvas de calibração lineares 
 
 
Figura 7.10 – Temperaturas no plasma indutivamente acoplado 
 
 
7.2.1.2 - Plasma de corrente contínua – DCP 
•••• Três eletrodos arranjados em forma de Y invertido 
- dois anodos de grafite 
- catodo de tungstênio 
 260
Capítulo 7 – Espectrometria de emissão atômica 
 
•••• Contato momentâneo do catodo com anodos →→→→ ionização do Ar →→→→ 
desenvolvimento de corrente (14 A) que gera íons que sustentam o plasma 
indefinidamente 
-temperatura na região central ⇒⇒⇒⇒ 10000 K 
-temperatura na região de observação ⇒⇒⇒⇒ 5000K 
•••• Comparação com ICP 
-espectro com menos linhas 
-linhas atômicas e não de íons 
-sensibilidade menor 
-reprodutibilidade idêntica 
-menos gasto de Ar 
-sistema mais simples e barato 
-manutenção constante (substituição dos eletrodos em intervalo de horas) enquanto 
o ICP não necessita manutenção 
 
Figura 7.11 – Plasma de argônio com três eletrodos 
 
 261
Capítulo 7 – Espectrometria de emissão atômica 
 
7.2.1.3 - Espectrômetros com fontes de atomização por plasma 
���� Características gerais 
•••• faixa de trabalho ⇒⇒⇒⇒ UV/VIS (170-900 nm) 
•••• extensão para λ = 150 - 160 nm (vácuo) ⇒⇒⇒⇒ determinação de C, P e S 
•••• dispersão linear típica ⇒⇒⇒⇒ 0,1 – 0,6 nm/mm 
•••• distância focal ⇒⇒⇒⇒ 0,5 – 3 m 
 
 
���� Tipos de instrumentos 
••••Seqüencial 
••••Simultâneo ou multicanal 
••••Transformada de Fourier 
 
 
7.2.1.3.1 - Espectrômetros seqüenciais 
••••análise de um elemento por vez 
••••aquisição dos dados na linha de trabalho de cada elemento →→→→ alguns segundos 
→→→→ relação sinal/ruído satisfatória 
••••monocromador →→→→ rede holográfica →→→→ 2400-3600 ranhuras/mm 
••••varredura →→→→ rotação da rede controlada por computador →→→→ diferentes λ focados 
seqüencialmente na fenda de saída 
••••espectros complexos →→→→ aquisição de dados de uma linha de cada vez →→→→ tempo 
muito grande 
 
 
 
 
 
 262
Capítulo 7 – Espectrometria de emissão atômica 
 
 
Figura 7.12 – Espectrômetro de emissão por plasma ICP (seqüencial) e de absorção 
atômica (Perkin Elmer) 
 
 
���� Espectrômetros com Varredura Rápida ⇒⇒⇒⇒ Espectrômetros Slew-Scan 
•••• rede ou fenda e detetor movidos por motor com duas velocidades 
- movimento rápido entre uma linha e outra (região sem interesse) 
- movimento lento nas proximidades da linha de trabalho 
 
 
 
Figura 7.13 – Esquema de espectrômetro de varredura rápida para ICP 
 
 263
Capítulo 7 – Espectrometria de emissão atômica 
 
••••duas redes com número de ranhuras diferentes montadas no mesmo “suporte” 
- UV ⇒ m =2 ⇒ 2400 ranhuras/mm 
- VIS ⇒ m = 1 ⇒ 1200 ranhuras/mm 
••••filtro →→→→ remoção de radiação estranha 
••••duas fendas de saída e dois tubos fotomultiplicadores →→→→ região UV e região VIS 
••••custo menor e maior versatilidade que os espectrômetros multicanais 
••••medidas mais lentas 
••••maior consumo de amostra 
 
 
���� Espectrômetros de varredura com rede Echelle 
••••operação →→→→ varredura ou multicanal 
••••dois elementos de dispersão em série →→→→ rede Echelle e prisma 
••••rede Echelle maior dispersão e melhor resolução que rede Echellette de mesmo 
tamanho 
 
Figura 7.14 – Rede de difração tipo Echelle 
 
••••espaço entre ranhuras maior ⇒⇒⇒⇒ d ≅ 0,0125 mm (d ≅ 8,3 x 10-4 mm na echellette) 
••••reflexão ⇒⇒⇒⇒ lado menor da ranhura 
••••equação da rede ⇒⇒⇒⇒ mλλλλ = d (sen i + sen r) 
na prática ⇒⇒⇒⇒ i = r = ββββ 
 264
Capítulo 7 – Espectrometria de emissão atômica 
 
então ⇒⇒⇒⇒ mλλλλ= 2d sen ββββ 
Dispersão linear recíproca ⇒⇒⇒⇒ ββββ
λλλλλλλλ
d
d
F
1
dy
dD 1- ======== 
como ⇒⇒⇒⇒ m dλλλλ = 2 d cosββββ dββββ 
então 
mF
cosd2D 1- ββββ==== 
 
••••D é grande →→→→ para o instrumento operar no intervalo de 200-800 nm será preciso 
empregar ordens de difração na faixa de 28 – 118 (90 ordens sucessivas) →→→→ 
neste caso é inevitável ter um sistema de dispersão cruzada →→→→ espectro 
bidimensional 
 
Figura 7.15 – Elementos de dispersão de monocromador com rede Echelle 
 
 265
Capítulo 7 – Espectrometria de emissão atômica 
 
 
Figura 7.16 – Representação esquemática de espectrômetro com monocromador 
com rede tipo Echelle 
 
 
7.2.1.3.2 - Espectrômetros multicanal 
���� Policromadores 
••••uso de vários tubos fotomultiplicadores para detecção dos sinais 
 
fenda de entrada 
fendas de saída 
superfície da rede 
 
Localizadas sobre uma circunferência (círculo ótico 
de Rowland) 
↓↓↓↓ 
curvatura = distância focal da rede côncava 
 
••••radiação de cada fenda de saída →→→→ espelho →→→→ tubo fotomultiplicador 
 
 
 
 266
Capítulo 7 – Espectrometria de emissão atômica 
 
 
Figura 7.17 – Representaçãoesquemática de espectrômetro de plasma multicanal 
baseado no círculo ótico de Rowland 
 
 
••••posição das fendas de saída →→→→ configuradas pelo fabricante de acordo com os 
elementos a serem analisados (solicitação do cliente) 
••••pode ser modificado (custo baixo) para seleção de novos elementos ou eliminação de 
alguns 
••••sinal de cada tubo fotomultiplicador →→→→ tratado eletronicamente 
••••fenda de entrada →→→→ varredura através dos picos →→→→ informações para correção do 
background 
••••usados com plasma ou arco e centelha 
••••ideais para análises de rotina (5 min para detecção de 20 ou mais elementos) 
••••mais caros e menos versáteis que os espectrômetros de varredura 
 267
Capítulo 7 – Espectrometria de emissão atômica 
 
���� Espectrômetro com detector do tipo injeção de carga 
••••início da década de 90 
••••monocromador →→→→ rede tipo Echelle 
••••detetores bidimensionais por injeção de carga 
••••prisma de CaF2 →→→→ separação das diferentes ordens espectrais 
••••espelho toroidal →→→→ focar imagens da fenda na superfície do transdutor 
 
 
 
Figura 7.18 – Diagrama ótico de espectrômetro de emissão por plasma multicanal 
com detetor tipo injeção de carga 
 
••••transdutor →→→→ dispositivo de “injeção de carga” 
- superfície 8,7 x 6,6 mm →→→→ 94672 elementos de detecção 
- resfriado com N2 líquido →→→→ eliminação de corrente escura 
- janela de leitura →→→→ conjunto de 39 elementos de detecção (13x3) →→→→ 
monitoração de cada linha espectral 
∗ 9 elementos centrais →→→→ linha espectral 
∗ 15 elementos de cada lado →→→→ sinal de fundo (background) 
 268
Capítulo 7 – Espectrometria de emissão atômica 
 
 
Figura 7.19 – Representação esquemática de detetor por injeção de carga 
 
 
- aquisição de sinal 
∗ inicialmente acumula sinal dos 9 elementos centrais até se ter intensidade 
suficiente para relação sinal/ruído satisfatória 
∗ aquisição dos dois conjuntos de 15 elementos para correção do sinal de fundo 
∗ o processo é simultâneo nas janelas de cada elemento 
∗ linha intensa aquisição rápida 
∗ linhas fracas tempo de aquisição maior (100 s) 
∗ necessidade de calibração periódica (ref. Hg ⇒ λ = 253,65 nm) 
•••• disponíveis softwares com posição das linhas de mais de 40 elementos 
 
 
���� Espectrômetro com detector do tipo transferência de carga acoplado 
••••dois sistemas Echelle para dispersão da radiação 
••••dois detetores do tipo transferência de carga acoplados 
- 160-375 nm (UV) 
- 375 – 782 nm (VIS) 
 269
Capítulo 7 – Espectrometria de emissão atômica 
 
- detetor →→→→ superfície retangular na qual existem vários elementos de detecção 
formados por uma rede linear de chips de silício. Estes elementos são 
posicionados de modo a monitorar as três ou quatro linhas de emissão principais 
de 72 elementos 
 
 
Figura 7.20 – Espectrômetro com monocromador Echelle e transdutores tipo de 
transferência de carga acoplados 
 
 
7.2.1.3.3 - Espectrômetros por transformada de Fourier 
••••FT-UV/VIS ⇒⇒⇒⇒ desenvolvidos de modo a permitir a análise multielementar simultânea 
nos espectrômetros de emissão com atomização por plasma 
••••uso da FT na região UV/VIS 
- não há aumento na relação sinal/ruído e em muitos casos ocorre redução 
∗ IV ⇒⇒⇒⇒ limitação ⇒⇒⇒⇒ ruídos do detetor 
∗ UV/VIS ⇒⇒⇒⇒ limitações ⇒⇒⇒⇒ ruídos associados à fonte 
- caros 
- ajustes mecânicos difíceis 
- não são usados comercialmente 
 270
Capítulo 7 – Espectrometria de emissão atômica 
 
7.2.1.4 - Aplicações da espectrometria de emissão com atomização por plasma 
••••Fonte de atomização por plasma →→→→ análises quantitativas e qualitativas 
••••ICP e DCP →→→→ dados analíticos quantitativos de melhor qualidade que chama 
- elevada estabilidade 
- elevada relação sinal/ruído 
- background pouco significativo 
- ausência de interferências 
- ICP →→→→ limites de detecção mais baixos que DCP 
- DCP →→→→ mais baratos e fácil de operar 
 
7.2.1.5 - Preparo da amostra 
••••amostras líquidas ⇒⇒⇒⇒ similar a atomização por chama 
••••amostras sólidas ⇒⇒⇒⇒ vaporização eletrotérmica 
 
 
7.2.1.6 - Elementos determinados 
••••todos os metais 
••••ametais B, P, N, S, C →→→→ sistema de vácuo, pois as linhas de emissão aparecem em 
λ < 180 nm onde componentes do ar atmosférico absorvem 
••••aplicação limitada no caso dos metais alcalinos 
- Li, K, Rb e Cs linhas mais intensas IV próximo →→→→ problemas de detecção 
••••limitado à cerca de 60 elementos 
 
7.2.1.7 - Curvas de calibração 
••••sinal do detetor (corrente ou voltagem do transdutor) em função da concentração do 
analito 
- gráficos escala log x log →→→→ faixa linear →→→→ ampla faixa de concentrações 
 271
Capítulo 7 – Espectrometria de emissão atômica 
 
 
 
 
 
 
 
 
 
 
 
Figura 7.21 – Curvas de calibração típicas 
 
••••desvios de linearidade podem ser observados 
- auto-absorção em concentrações elevadas 
- correções de background errôneas 
ex: Tl e Nb na Figura 7.20 
••••uso de padrão interno 
C vs 
S
S
padrão
analito
 ou Clog vs 
S
Slog
padrão
analito








 
 
Figura 7.22 – Curvas de calibração 
ICP-AES. Método do padrão interno. 
(Y⇒⇒⇒⇒ λλλλ = 242,2 nm) 
 272
Capítulo 7 – Espectrometria de emissão atômica 
 
7.2.1.8 - Interferências 
••••pouca probabilidade de interferências químicas da matriz 
••••baixas concentrações do analito →→→→ cuidado com emissões de fundo →→→→ 
recombinação dos íons Ar+ com elétrons 
- correção →→→→ medidas do sinal dos dois lados do pico 
••••possibilidade de interferências espectrais é maior, pois os espectros são mais ricos 
em linhas 
- conhecimento dos elementos provavelmente presentes e cuidadosa busca de 
informações e referências da literatura 
 
 
7.2.1.9 - Limites de detecção 
 
Figura 7.23 – Limites de detecção e número de linhas de trabalho para as análises 
por ICP-AES de diversos elementos químicos. 
 
 
 273
Capítulo 7 – Espectrometria de emissão atômica 
 
Tabela 7.2 – Comparação dos limites de detecção (número de elementos) para os 
vários métodos de espectrometria atômica 
Método 
Número de elementos detectados a concentração 
< 1 ppb 1-10 ppb 11-100 ppb 101-500 ppb > 500 ppb 
Plasma 
AES 9 32 14 6 0 
Chama 
AES 4 12 19 6 19 
AFS 4 14 16 4 6 
AAS 1 14 25 3 14

Outros materiais