Buscar

ALGEBRA LINEAR E VETORIAL

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 4 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Disciplina:
	Álgebra Linear e Vetorial (MAD13)
	Avaliação:
	Avaliação II - Individual FLEX ( Cod.:514279) ( peso.:1,50)
	Nota da Prova:
	10,00
	
	
Legenda:  Resposta Certa   Sua Resposta Errada  
Parte superior do formulário
	1.
	A ortogonalidade entre dois vetores pode ser calculada. Trata-se de verificar se o ângulo formado entre dois vetores é 90º. Para isto, podemos nos apoiar nos conceitos de produto interno usual para auxiliar no processo. Com base nisso, para qual(is) valor(es) de k os vetores (2,1,3) e (1,7,k) são ortogonais? Classifique V para as opções verdadeiras e F para as falsas:
(    ) Para k = -3.
(    ) Para nenhum valor de k.
(    ) Para qualquer valor de k.
(    ) Para k = 3 e k = -3.
Assinale a alternativa que apresenta a sequência CORRETA:
	 a)
	F - F - F - V.
	 b)
	V - F - F - F.
	 c)
	F - F - V - F.
	 d)
	F - V - F - F.
	2.
	A criação do Plano Cartesiano, por René Descartes, possibilitou o avanço de várias áreas da matemática. Uma delas foi trabalhar conceitos algébricos de maneira geométrica. Com isto, a Álgebra Vetorial transcendeu o campo abstrato para o campo prático. Numa visão concreta, qual das figuras a seguir é a representação do vetor v = (-1,2) no plano cartesiano?
	
	 a)
	Figura 1.
	 b)
	Figura 3.
	 c)
	Figura 4.
	 d)
	Figura 2.
	3.
	Ás vezes, é necessário detectar, dentro de um espaço vetorial V, subconjuntos S que sejam eles próprios espaços vetoriais "menores". Tais conjuntos serão chamados subespaços vetoriais de V. A partir disso, leia atentamente a questão e assinale a alternativa CORRETA:
	
	 a)
	Somente a opção I está correta.
	 b)
	Somente a opção IV está correta.
	 c)
	Somente a opção II está correta.
	 d)
	Somente a opção III está correta.
	4.
	Os vetores têm aplicação em várias áreas do conhecimento, tanto técnico quanto científico, como física, engenharia e economia, por exemplo. No entanto, são necessárias definições de operações e propriedades para dar respaldo a essas aplicações. Algumas das definições e propriedades tratam-se da soma de vetores e da multiplicação por escalar. Então, resolva 2u + 7v, considerando u = (-3, 2, 1, -1) e v = (-4, 8, -3, 2), e assinale a alternativa CORRETA:
	 a)
	A soma é: (-34, 60, -19, 12).
	 b)
	A soma é: (-34, 53, -19, 14).
	 c)
	A soma é: (-7, 9, -2, 2).
	 d)
	A soma é: (-6, 4, 2, 0).
	5.
	A operação entre vetores chamada de Produto Interno Usual aplica-se, muitas vezes, à necessidade de observar se dois vetores são ortogonais ou não. A partir daí, encontramos aplicações na engenharia e na computação em geral. Com base nisso, considere os vetores a seguir, calcule seu Produto Interno Usual e assinale a alternativa CORRETA:
	
	 a)
	-4.
	 b)
	4.
	 c)
	-19.
	 d)
	19.
	6.
	Dentre os conceitos mais importantes dos espaços vetoriais está o de Base do Espaço. A base de um espaço é um subespaço de vetores LI (Linearmente Independentes) que geram o espaço vetorial. A respeito deste conceito, dado o espaço vetorial V = {(x, y, z) de R³, tal que x = 0}, analise quais subespaços de R³ abaixo podem ser bases. Classifique V para as sentenças verdadeiras e F para as falsas:
(    ) [(0,2,2) ; (0,4,1)].
(    ) [(0,2,2) ; (0,4,4)].
(    ) [(1,0,1) ; (-1,1,0)].
Assinale a alternativa que apresenta a sequência CORRETA:
	 a)
	V - F - F.
	 b)
	V - F - V.
	 c)
	V - V - F.
	 d)
	F - F - V.
	7.
	Ao se falar de vetores, algumas situações e definições são importantes para o desenvolvimento do raciocínio de tópicos posteriores. Alguns deles são o de dependência linear e o de subespaço vetorial. A partir deles, desenvolvem-se toda a base de sustentação da Teoria Vetorial. Visto isso, classifique V para as sentenças verdadeiras e F para as falsas e depois assinale a alternativa que apresenta a sequência CORRETA:
	
	 a)
	V - F - V.
	 b)
	V - V - F.
	 c)
	F - V - F.
	 d)
	F - F - V.
	8.
	Ao analisar os Espaços Vetoriais, podemos realizar a análise de sua dimensão. Nesse sentido, é possível relacioná-la com a quantidade de vetores LI que geram este espaço. As aplicações deste conceito são puramente utilizadas na matemática, nas provas de teoremas e propriedades. Baseado nisto, classifique V para as sentenças verdadeiras e F para as falsas:
(    ) A dimensão do conjunto de matrizes de ordem n x n é igual a n².
(    ) A dimensão do espaço formado pelos polinômio de grau 3 é igual a 3.
(    ) A dimensão do R² é igual a 3.
(    ) A dimensão do espaço formado pelos polinômios de grau 3 é igual a 4.
Assinale a alternativa que apresenta a sequência CORRETA:
	 a)
	V - F - F - V.
	 b)
	V - F - F - F.
	 c)
	F - V - F - V.
	 d)
	F - F - V - V.
	9.
	Ao falarmos do Produto Interno, podemos nos confundir, muitas vezes. Por exemplo, em física, em particular nas aplicações da teoria da Relatividade, o produto interno tem propriedades um pouco diferentes do que as usuais. Podemos ter equívocos quanto ao produto escalar, comumente usado na geometria euclidiana, que é um caso especial de produto interno. Portanto, quanto à necessidade de definirmos Produto Interno corretamente, analise as sentenças a seguir: 
I- O produto interno se faz necessário por facilitar e tornar mais coerente, num espaço vetorial qualquer, noções como comprimento e distância.
II- O produto interno se faz necessário para a generalização dos conceitos de autovalor e autovetor.
III- O produto interno se faz necessário porque facilita o cálculo do determinante.
IV- O produto interno se faz necessário porque determina se a transformação linear é um operador linear.
Assinale a alternativa CORRETA:
	 a)
	Somente a sentença III está correta.
	 b)
	Somente a sentença II está correta.
	 c)
	Somente a sentença IV está correta.
	 d)
	Somente a sentença I está correta.
	10.
	A noção comum de vetores como objetos com tamanho, direção e sentido, com as operações de adição e multiplicação por números reais forma a ideia básica de um espaço vetorial. Deste ponto de partida, então, para definirmos um espaço vetorial, precisamos de um conjunto, uma operação de adição de elementos deste conjunto, e uma operação de multiplicação de escalares (por exemplo, números reais) por elementos deste conjunto. A respeito das propriedades dos espaços vetoriais, classifique V para as sentenças verdadeiras e F para as falsas:
(    ) Os espaços vetoriais preservam as operações de soma e multiplicação por escalar.
(    ) Os espaços vetoriais podem ser imaginados como domínio de contradomínio de operações lineares.
(    ) A base de um espaço é um conjunto LI que gera todos os elementos de um espaço.
(    ) A base de um espaço é um conjunto LD que gera todos os elementos de um espaço.
Assinale a alternativa que apresenta a sequência CORRETA:
	 a)
	V - F - V - F.
	 b)
	F - F - F - V.
	 c)
	F - V - V - F.
	 d)
	V - V - V - F.

Continue navegando