Prévia do material em texto
· Pergunta 1 1 em 1 pontos Um dos métodos numéricos utilizados para determinação das raízes de uma função qualquer é o método da iteração linear. Considere , em que . Assim, a partir do uso do método linear e considerando a sequência de raízes , calcule o . Assinale a alternativa correta. Resposta Selecionada: 2,13977838. Resposta Correta: 2,13977838. Feedback da resposta: Resposta correta. A alternativa está correta, pois aplicando o método da iteração linear e calculando a função de iteração , encontramos , conforme podemos verificar na tabela a seguir: 0 2 1 2,13198295 0,131982947 2 2,13931949 0,007336548 3 2,13977838 0,000458881 · Pergunta 2 1 em 1 pontos Suponha que um motorista realizou a leitura da velocidade instantânea de um veículo em alguns momentos específicos e registrou esses dados como na tabela abaixo: t (min) 0 5 10 15 20 25 30 35 v (km/h) 42 47 50 55 60 62 70 80 Fonte: Elaborada pelo autor. Como o motorista esqueceu de anotar a quilometragem do veículo e deseja saber uma aproximação da distância percorrida, calcule essa aproximação a partir da regra dos trapézios composta sobre todos os pontos dados na tabela. Resposta Selecionada: 33,75 km Resposta Correta: 33,75 km Feedback da resposta: Resposta correta. A alternativa está correta, pois aplicando a regra dos trapézios composta com 8 pontos distintos, temos Assim, arrumando e substituindo os pontos dados na tabela, podemos calcular o valor de km. 0 0 42 1 5 47 2 10 50 3 15 55 4 20 60 5 25 62 6 30 70 7 35 80 · Pergunta 3 0 em 1 pontos Antes da aplicação do método da bisseção, devemos, inicialmente, determinar intervalos que contenham uma única raiz, isto é, precisamos isolar as raízes. Após esse processo, podemos proceder e refinar as raízes até o grau de exatidão requerido em cada problema. Diante do exposto, a partir do método gráfico, podemos notar que a função tem uma raiz contida no intervalo: Assinale a alternativa correta: Resposta Selecionada: . Resposta Correta: . Feedback da resposta: Sua resposta está incorreta. A alternativa está incorreta, pois, ao aplicarmos o método gráfico, percebemos que a interseção ocorre no interior do intervalo [-0,8;-0,4]. Perceba que, para as funções e e fazendo o x variar a cada 0,4 unidades, chegamos ao resultado informado. · Pergunta 4 1 em 1 pontos O método da iteração linear, também conhecido como método do ponto fixo, é um forte aliado na determinação de raízes de funções por meio de métodos numéricos. Considerado a função , e uma função de iteração convenientemente escolhida. E, considerando a sequência de raízes , calcule o da função. Assinale a alternativa correta. Resposta Selecionada: 2,13981054. Resposta Correta: 2,13981054. Feedback da resposta: Resposta correta. A alternativa está correta, pois aplicando o método da iteração linear e calculando a função , encontramos , conforme a tabela a seguir: 0 3 1 2,22023422 0,779765779 2 2,14517787 0,075056356 3 2,14014854 0,005029329 4 2,13983056 0,000317979 5 2,13981054 2,00222E-05 · Pergunta 5 1 em 1 pontos A resolução de um problema de engenharia através da utilização de um computador aplicando um modelo numérico produz, em geral, uma solução aproximada do problema. A inserção de erros na resolução do problema pode ser devida a vários fatores. Em relação a sua origem, podemos considerar quatro tipos de erros. A respeito das fontes de erros, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s). I. ( ) Os erros inerentes aos modelos matemáticos devem-se à imposição, na maioria das vezes, de simplificações na representação dos fenômenos físicos para torná-los tratáveis. II. ( ) Os erros inerentes aos dados se devem à utilização de dados e parâmetros obtidos a partir de experimentos e, frequentemente, comportam aproximações. III. ( ) Os erros de truncamento não ocorrem nos computadores de última geração. IV. ( ) Os erros de arredondamento ocorrem devido à precisão finita das máquinas calculadoras e computadores. Assinale a alternativa que apresenta a sequência correta: Resposta Selecionada: V, V, F, V. Resposta Correta: V, V, F, V. Feedback da resposta: Resposta correta. A sequência está correta. As afirmativas I, II e IV são verdadeiras, pois representam as definições dos erros inerentes à modelagem, aos dados e arredondamento, respectivamente. A afirmativa III é falsa, pois os erros de truncamento ocorrem mesmo nos computadores de última geração. · Pergunta 6 1 em 1 pontos Antes de aplicarmos o método de Newton para refinamento das raízes de uma função, devemos realizar o isolamento das raízes por meio do método gráfico. Nesse sentido, suponha que esse trabalho inicial foi realizado e determinamos que . Dessa forma, considere a função e uma tolerância . Ao utilizarmos o método de Newton, assinale a alternativa que corresponde ao número mínimo de iterações necessárias para encontrarmos uma raiz pertencente ao intervalo . Resposta Selecionada: 5. Resposta Correta: 5. Feedback da resposta: Resposta correta. A alternativa está correta, pois aplicando o método de Newton para a função , verificamos que o número mínimo de iterações com a tolerância e intervalos dados é igual a 5, conforme tabela a seguir: 0 0,1 -2,2025851 11 1 0,30023501 -0,9029547 4,33072417 0,20023501 2 0,50873472 -0,1670939 2,965661 0,20849971 3 0,56507759 -0,0057146 2,76966848 0,05634287 4 0,56714088 -6,65E-06 2,76323032 0,00206329 5 0,56714329 -9,003E-12 2,76322283 2,4066E-06 · Pergunta 7 1 em 1 pontos Frequentemente, precisamos encontrar raízes de funções/equações associadas a problemas da Engenharia/Ciência. Um problema clássico é a determinação das órbitas dos satélites. A equação de Kepler, usada para determinar órbitas de satélites, é dada por: Suponha que sejam conhecidos e . Usando o método da iteração linear, calcule o número mínimo de iterações necessárias para determinar a raiz da equação dada, com uma tolerância . Para isso, isole a raiz num intervalo de comprimento 1, ou seja, ( e naturais) e . Assinale a alternativa correta. FRANCO, N. M. B. Cálculo Numérico . São Paulo: Pearson, 2006. Resposta Selecionada: 6. Resposta Correta: 6. Feedback da resposta: Resposta correta. A alternativa está correta, pois aplicando o método da iteração linear e calculando a função e , encontramos 6 iterações, no mínimo, para a tolerância , conforme a tabela a seguir: 0 0 1 0,6 0,6 2 0,76939274 0,169392742 3 0,80870975 0,039317004 4 0,81701908 0,008309337 5 0,81873268 0,001713599 6 0,8190842 0,000351514 · Pergunta 8 1 em 1 pontos Quando desejamos determinar a raiz de uma função com precisão elevada, podemos utilizar o método de Newton. Sendo assim, considere a função e uma tolerância . Utilizando o método de Newton, calcule qual o número mínimo de iterações necessárias para encontrar uma raiz pertencente ao intervalo [2,7;3,3]. Assinale a alternativa correta. Resposta Selecionada: 3. Resposta Correta: 3. Feedback da resposta: Resposta correta. A alternativa está correta, pois aplicando o método de Newton para a função , percebemos que o número mínimo de iterações é igual a 3, conforme tabela a seguir: 0 3,3 1,60892373 6,52810763 1 3,05353903 0,06096316 6,03339181 0,24646097 2 3,04343474 0,00010247 6,01310873 0,01010429 3 3,0434177 2,9149E-10 6,01307452 1,7042E-05 · Pergunta 9 1 em 1 pontos A temperatura (em graus Celsius) numa região de uma cidade foi medida três vezesdurante um dia ensolarado e construiu-se a seguinte tabela com os dados: Hora 10 12 14 Temperatura 29 33 38 Fonte: Elaborada pelo autor. Utilizando interpolação sobre todos os pontos dados, estime a temperatura da região dessa cidade às 13 horas nesse mesmo dia. A seguir, assinale a opção que corresponde à alternativa correta: Resposta Selecionada: 35,38 graus Celsius. Resposta Correta: 35,38 graus Celsius. Feedback da resposta: Resposta correta. A alternativa está correta, pois, aplicando a interpolação quadrática para os três pontos fornecidos, encontramos , e e, consequentemente, o polinômio interpolador é igual a . Portanto, a aproximação desejada é igual a graus celsius. · Pergunta 10 1 em 1 pontos A velocidade de um míssil lançado a partir do solo foi medida três vezes, segundos após o lançamento, e os valores foram registrados na tabela que segue: Tempo ( ) 2 5 6 Velocidade ( ) 20,25 100,32 135,68 Fonte: Elaborada pelo autor. Use esses dados e a interpolação quadrática para calcular a velocidade do míssil após 3 segundos do lançamento. Assinale a alternativa que corresponde à opção correta: Resposta Selecionada: 42,61 . Resposta Correta: 42,61 . Feedback da resposta: Resposta correta. A alternativa está correta, pois, aplicando a interpolação quadrática para os três pontos fornecidos, encontramos , e e, consequentemente, o polinômio interpolador é igual a . Portanto, a aproximação desejada é igual a .