Prévia do material em texto
0 1,9 1 1,16133316 0,738666842 2 1,36761525 0,206282096 3 1,29009217 0,077523087 4 1,31685381 0,026761642 Pergunta 3 Resposta Selecionada: Resposta Correta: Feedback da resposta: Com a equação de Lambert, dada por , em que t é um número real positivo, é possível obter uma única solução , que pertence ao intervalo [0,t]. Por intermédio do método de Newton e usando essa estimativa como intervalo inicial, calcule quantas iterações são necessárias para obter o valor numérico de quando t=2, considere uma tolerância . Assinale a alternativa correta. 6. 6. Resposta correta. A alternativa está correta, pois aplicando o método de Newton na função , determinamos que o número mínimo de iterações é igual a 6, conforme a tabela a seguir: 0 2 12,7781122 22,1671683 1 1,42355686 3,910411301 10,0622731 0,57644314 2 1,03493579 0,913267121 5,7281926 0,38862107 3 0,87550206 0,10127495 4,50135492 0,15943373 4 0,85300329 0,001729204 4,34841325 0,02249877 5 0,85260562 5,29273E-07 4,34575157 0,00039766 6 0,8526055 5,01821E-14 4,34575075 1,2179E-07 Pergunta 4 Quando desejamos determinar a raiz de uma função com precisão elevada, podemos utilizar o método 1 em 1 pontos 1 em 1 pontos Resposta Selecionada: Resposta Correta: Feedback da resposta: de Newton. Sendo assim, considere a função e uma tolerância . Utilizando o método de Newton, calcule qual o número mínimo de iterações necessárias para encontrar uma raiz pertencente ao intervalo [2,7;3,3]. Assinale a alternativa correta. 3. 3. Resposta correta. A alternativa está correta, pois aplicando o método de Newton para a função , percebemos que o número mínimo de iterações é igual a 3, conforme tabela a seguir: 0 3,3 1,60892373 6,52810763 1 3,05353903 0,06096316 6,03339181 0,24646097 2 3,04343474 0,00010247 6,01310873 0,01010429 3 3,0434177 2,9149E-10 6,01307452 1,7042E-05 Pergunta 5 Resposta Selecionada: Resposta Correta: Feedback da resposta: Um dos métodos numéricos utilizados para determinação das raízes de uma função polinomial é o método da iteração linear. Isole a raiz positiva da função polinomial em um intervalo ( e naturais) de comprimento 1, isto é, Calcule a quarta ( ) aproximação para esta raiz, considere . Assinale a alternativa correta. 1,07998603. 1,07998603. Resposta correta. A alternativa está correta, pois aplicando o método da iteração linear e calculando a função de iteração , encontramos , conforme a tabela a seguir: 0 1,4 1 1,10048178 0,299518223 2 1,08125569 0,019226082 3 1,07998603 0,001269666 Pergunta 6 1 em 1 pontos 1 em 1 pontos Resposta Selecionada: Resposta Correta: Feedback da resposta: Um dos métodos numéricos utilizados para determinação das raízes de uma função qualquer é o método da iteração linear. Considere , em que . Assim, a partir do uso do método linear e considerando a sequência de raízes , calcule o . Assinale a alternativa correta. 2,13977838. 2,13977838. Resposta correta. A alternativa está correta, pois aplicando o método da iteração linear e calculando a função de iteração , encontramos , conforme podemos verificar na tabela a seguir: 0 2 1 2,13198295 0,131982947 2 2,13931949 0,007336548 3 2,13977838 0,000458881 Pergunta 7 Resposta Selecionada: Resposta Correta: Feedback da resposta: Frequentemente, precisamos encontrar raízes de funções/equações associadas a problemas da Engenharia/Ciência. Um problema clássico é a determinação das órbitas dos satélites. A equação de Kepler, usada para determinar órbitas de satélites, é dada por: Suponha que sejam conhecidos e . Usando o método da iteração linear, calcule o número mínimo de iterações necessárias para determinar a raiz da equação dada, com uma tolerância . Para isso, isole a raiz num intervalo de comprimento 1, ou seja, ( e naturais) e . Assinale a alternativa correta. FRANCO, N. M. B. Cálculo Numérico . São Paulo: Pearson, 2006. 6. 6. Resposta correta. A alternativa está correta, pois aplicando o método da iteração linear e calculando a função e , encontramos 6 iterações, no mínimo, para a tolerância , conforme a tabela a seguir: 0 0 1 0,6 0,6 2 0,76939274 0,169392742 1 em 1 pontos 3 0,80870975 0,039317004 4 0,81701908 0,008309337 5 0,81873268 0,001713599 6 0,8190842 0,000351514 Pergunta 8 Resposta Selecionada: Resposta Correta: Feedback da resposta: Vamos considerar um problema físico de estática: uma plataforma está fixada em uma janela de madeira por meio de uma dobradiça, em que momento é calculado por , é o ângulo da plataforma com a horizontal e k é uma constante positiva. A plataforma é feita de material homogêneo, seu peso é P e sua largura é l. Modelando o problema, podemos mostrar que com . A partir do método de Newton, com uma tolerância e o menor número possível de iterações, determine o valor de para l=1 m, P=400 N, k=50 Nm/rad, sabendo que o sistema está em equilíbrio. Assinale a alternativa que corresponde ao valor correto de . . . Resposta correta. A alternativa está correta, pois aplicando o método de Newton na função , determinamos que satisfaz a tolerância desejada, conforme a tabela a seguir: 0 1,57079633 1,57079633 5 1 1,25663706 0,02056908 4,80422607 0,31415927 2 1,25235561 1,1379E-05 4,79889904 0,00428146 3 1,25235323 3,5203E-12 4,79889607 2,3711E-06 Pergunta 9 Resposta Selecionada: Resposta Correta: Feedback da O número de bilhões de indivíduos de determinada bactéria poluente está decaindo em função do tempo t (a partir de t=0), em um lago por intermédio da função . Aplique o método de Newton com uma tolerância e o menor número possível de iterações para estimar o tempo necessário que a quantidade de bactérias seja reduzida para 5 bilhões de indivíduos. Assinale a alternativa correta. 2,12967481. 2,12967481. Resposta correta. A alternativa está correta, pois, ao aplicarmos o método de Newton 1 em 1 pontos 1 em 1 pontos resposta: à equação , determinamos que satisfaz a tolerância informada, conforme a tabela a seguir: 0 2 0,636864727 -5,3890249 1 2,1181781 0,05174436 -4,5384018 0,1181781 2 2,12957955 0,000425232 -4,4640208 0,01140145 3 2,12967481 2,93452E-08 -4,4634047 9,5258E-05 Pergunta 10 Resposta Selecionada: Resposta Correta: Feedback da resposta: Antes de aplicarmos o método de Newton para refinamento das raízes de uma função, devemos realizar o isolamento das raízes por meio do método gráfico. Nesse sentido, suponha que esse trabalho inicial foi realizado e determinamos que . Dessa forma, considere a função e uma tolerância . Ao utilizarmos o método de Newton, assinale a alternativa que corresponde ao número mínimo de iterações necessárias para encontrarmos uma raiz pertencente ao intervalo . 5. 5. Resposta correta. A alternativa está correta, pois aplicando o método de Newton para a função , verificamos que o número mínimo de iterações com a tolerância e intervalos dados é igual a 5, conforme tabela a seguir: 0 0,1 -2,2025851 11 1 0,30023501 -0,9029547 4,33072417 0,20023501 2 0,50873472 -0,1670939 2,965661 0,20849971 3 0,56507759 -0,0057146 2,76966848 0,05634287 4 0,56714088 -6,65E-06 2,76323032 0,00206329 5 0,56714329 -9,003E-12 2,76322283 2,4066E-06 1 em 1 pontos