Prévia do material em texto
ATIVIDADE 2 – CÁLCULO NUMÉRICO COMPUTACIONAL PERGUNTA 1 Com a equação de Lambert, dada por , em que t é um número real positivo, é possível obter uma única solução , que pertence ao intervalo [0,t]. Por intermédio do método de Newton e usando essa estimativa como intervalo inicial, calcule quantas iterações são necessárias para obter o valor numérico de quando t=2, considere uma tolerância . Assinale a alternativa correta. RESPOSTA: 6 Feedback da resposta: PERGUNTA 2 Uma das aplicação dos métodos numéricos é o cálculo de raízes de funções. Ao utilizar o método de Newton, calcule a quinta () aproximação da raiz positiva da função . Para tanto, isole a raiz em um intervalo ( e naturais) de comprimento 1, isto é, . Note que, ao determinar a raiz positiva da função dada, você estará calculando uma aproximação para a raiz quadrada de 10. Assinale a alternativa que apresenta o valor correto de . RESPOSTA: x4 = 3,16227766 Feedback da resposta: PERGUNTA 3 Uma fábrica de alimentos deseja confeccionar uma embalagem para uma bebida para exportação. A embalagem deve ser um veículo em formato de paralelepípedo que possui as seguintes proporções: Em que x, y e z são as dimensões da embalagem. Para manter a proporção, a dimensão z deve ser uma soma de um múltiplo da dimensão x com 1, pois a empresa precisa deixar uma parte da embalagem reservada para informações do produto que são exigidas por lei. Além disso, a empresa deseja que o volume da embalagem seja igual a 500 ml, ou seja, 500 . Diante da situação apresentada e utilizando o método de Newton, considerando a tolerância e o menor número possível de iterações, determine a dimensão x da embalagem, usando como intervalo inicial que contém a raiz. Assinale a alternativa correta. RESPOSTA: x3 = 4,69891591 Feedback da resposta: PERGUNTA 4 O número de bilhões de indivíduos de determinada bactéria poluente está decaindo em função do tempo t (a partir de t=0), em um lago por intermédio da função . Aplique o método de Newton com uma tolerância e o menor número possível de iterações para estimar o tempo necessário que a quantidade de bactérias seja reduzida para 5 bilhões de indivíduos. Assinale a alternativa correta. RESPOSTA: 2,12967481 Feedback da resposta: PERGUNTA 5 Frequentemente, precisamos encontrar raízes de funções/equações associadas a problemas da Engenharia/Ciência. Um problema clássico é a determinação das órbitas dos satélites. A equação de Kepler, usada para determinar órbitas de satélites, é dada por: Suponha que sejam conhecidos e . Usando o método da iteração linear, calcule o número mínimo de iterações necessárias para determinar a raiz da equação dada, com uma tolerância. Para isso, isole a raiz num intervalo de comprimento 1, ou seja, ( e naturais) e . Assinale a alternativa correta. FRANCO, N. M. B. Cálculo Numérico. São Paulo: Pearson, 2006. RESPOSTA: 6 Feedback da resposta: PERGUNTA 6 Um dos métodos mais robustos para resolução de equações é o método de Newton, uma vez que ele exige um grande conhecimento das derivadas da função. Assim, utilizando o método de Newton para a função , e sabendo que a raiz . Assinale a alternativa que indica qual o valor de . RESPOSTA: - 1,0298665 Feedback da resposta: PERGUNTA 7 Isolando a raiz positiva da função em um intervalo ( e naturais) de comprimento 1, isto é, e utilizando o método da Iteração Linear, calcule a terceira ( ) aproximação para esta raiz. Calcule e escolha uma função de iteração apropriada. Assinale a alternativa correta. RESPOSTA: 1,08125569 Feedback da resposta: PERGUNTA 8 Quando não dispomos de métodos analíticos capazes de calcular as raízes de uma função, podemos recorrer aos métodos numéricos, entre os quais está o método da iteração linear. Considerando , e uma função de iteração convenientemente escolhida. Aplique o método da iteração linear e as sequência de raízes , calcule . Assinale a alternativa correta. RESPOSTA: 1,33177094 Feedback da resposta: PERGUNTA 9 Um dos métodos numéricos utilizados para determinação das raízes de uma função polinomial é o método da iteração linear. Isole a raiz positiva da função polinomial em um intervalo ( e naturais) de comprimento 1, isto é, Calcule a quarta ( ) aproximação para esta raiz, considere . Assinale a alternativa correta. RESPOSTA: 1,07998603 Feedback da resposta: PERGUNTA 10 Antes de aplicarmos o método de Newton para refinamento das raízes de uma função, devemos realizar o isolamento das raízes por meio do método gráfico. Nesse sentido, suponha que esse trabalho inicial foi realizado e determinamos que . Dessa forma, considere a função e uma tolerância . Ao utilizarmos o método de Newton, assinale a alternativa que corresponde ao número mínimo de iterações necessárias para encontrarmos uma raiz pertencente ao intervalo . RESPOSTA: 5 Feedback da resposta: