Buscar

APOL2 ANALISE MATEMATICA 2

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Continue navegando


Prévia do material em texto

Questão 1/10 - Análise Matemática
“Escrevemos limn→+∞Sn=+∞limn→+∞Sn=+∞ se SnSn se torna arbitrariamente grande à medida que nn cresce. Neste caso, dizemos que (Sn)(Sn) diverge para +∞+∞. Mais precisamente, limn→+∞Sn=+∞limn→+∞Sn=+∞ se, e somente se, para qualquer número cc, não importa o quão grande seja, existe um inteiro positivo n0n0 tal que quando n≥n0n≥n0, temos Sn>cSn>c”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:
AYRES, Frank, MENDENSON ELLIOTT. Cálculo. 5. ed. São Paulo: Bookman, 2013. p. 353.
Com base no fragmento de texto dado e nos conteúdos do livro-base Análise Matemática sobre Sequências, assinale a alternativa que só contém sequências que divergem para +∞+∞:
Nota: 10.0
	
	A
	(1n), (√n), (2n)(1n), (n), (2n)
	
	B
	(lnn), (n), (√n)(ln⁡n), (n), (n)
Você acertou!
Dado um número c, temos que: (livro-base, p. 60)lnn>c,∀n>ec (n0=ec)n>c,∀n>c (n0=c)√n>c,∀n>c2 (n0=c2)ln⁡n>c,∀n>ec (n0=ec)n>c,∀n>c (n0=c)n>c,∀n>c2 (n0=c2)
	
	C
	(2n+1), (ln2), (n)(2n+1), (ln⁡2), (n)
	
	D
	(cos(n)), (n2), (lnn)(cos⁡(n)), (n2), (ln⁡n)
	
	E
	(n√n), (sin(n)), (n)(nn), (sin⁡(n)), (n)
Questão 2/10 - Análise Matemática
Observe a seguir o gráfico da função f:X→Rf:X→R, dada por f(x)=x−2x2−1f(x)=x−2x2−1, onde X=R−{−1,1}X=R−{−1,1}:
Observando o gráfico da função f(x)=x−2x2−1f(x)=x−2x2−1 e considerando os conteúdos do livro-base Análise Matemática, analise as afirmativas a seguir.
I. Para todo ε>0ε>0, é possível encontrar δ>0δ>0 tal que x∈Xx∈X e 0<|x−2|<δ0<|x−2|<δ impliquem |f(x)|<ε|f(x)|<ε.
II. limx→∞f(x)=+∞limx→∞f(x)=+∞
III. Podemos dizer que quando xx se aproxima de 11 pela esquerda a função f(x)f(x) tende a +∞+∞.
IV. limx→−1+f(x)=+∞limx→−1+f(x)=+∞
V. Podemos dizer que não existe o limite de f(x)f(x) quando xx se aproxima de 1 porque 1 não é ponto de acumulação do conjunto XX.
São corretas apenas as afirmativas:
Nota: 10.0
	
	A
	I, II e V
	
	B
	II, III e IV
	
	C
	III e IV
	
	D
	I, III e IV
Você acertou!
As afirmativas I, III e IV são corretas. A afirmativa I é correta porque a função é contínua em x=2x=2 e f(2)=0f(2)=0. A afirmativa II é incorreta porque limx→+∞f(x)=0limx→+∞f(x)=0. A afirmativa III é correta porque dado M>0M>0 existe δ>0δ>0 tal que x∈Xx∈X e 0<|1−x|<δ0<|1−x|<δ implicam f(x)>Mf(x)>M. A afirmativa IV é correta porque dado M>0M>0 existe δ>0δ>0 tal que 0<x−(−1)<δ0<x−(−1)<δ implica que f(x)>Mf(x)>M. A afirmativa V está incorreta porque 1 é ponto de acumulação de XX. (livro-base, Capítulo 3).
	
	E
	I, IV e V
Questão 3/10 - Análise Matemática
O primeiro fato a destacar sobre uma série de potências ∑∞nan(x−x0)n∑n∞an(x−x0)n é que o conjunto de valores de xx para os quais ela converge é um intervalo de centro x0x0. Esse intervalo  pode ser limitado (aberto, fechado ou semi-aberto), igual a RR  ou até mesmo reduzir-se a um único ponto.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: LIMA, E.L. Análise Real . 4. ed. Rio de Janeiro: IMPA, 1999. p.159.
Considere a expansão da série de potências ex=∑∞n=0xnn!=1+x1!+x22!+x33!+⋯(x∈R)ex=∑n=0∞xnn!=1+x1!+x22!+x33!+⋯(x∈R)
Assinale a alternativa que contém os valores para x=1.
Nota: 10.0
	
	A
	e=∑∞n=01n!=1−11+12−16+⋯e=∑n=0∞1n!=1−11+12−16+⋯
	
	B
	e=∑∞n=01n!=1+11+12+16+⋯e=∑n=0∞1n!=1+11+12+16+⋯
Você acertou!
A alternativa correta é a letra b. Substituindo os valores de n no somatório temos: e=∑∞n=01n!=1+11!+122!+133!+⋯⇒e=∑∞n=01n!=1+11+12+16+⋯e=∑n=0∞1n!=1+11!+122!+133!+⋯⇒e=∑n=0∞1n!=1+11+12+16+⋯(livro-base p. 185).
	
	C
	e=∑∞n=01n!=1+13+15+⋯e=∑n=0∞1n!=1+13+15+⋯
	
	D
	e=∑∞n=01n!=1−13+15−⋯e=∑n=0∞1n!=1−13+15−⋯
	
	E
	e=∑∞n=02nn!=1+23+34+⋯e=∑n=0∞2nn!=1+23+34+⋯
Questão 4/10 - Análise Matemática
Observe o intervalo X=(−√2,√2 )X=(−2,2 ) representado na reta real:
 
 
Levando em consideração o intervalo dado e os conteúdos estudados no livro-base Análise Matemática sobre noções topológicas, analise as assertivas a seguir e marque V para as assertivas verdadeiras e F para as assertivas falsas.
 
I.   ( ) XX é um conjunto aberto.
II.  ( ) XX é um conjunto limitado.
III. ( ) XX  é um conjunto compacto.
IV.  ( ) XX é um conjunto fechado.
 
Agora, assinale a alternativa que representa a sequência correta.
Nota: 10.0
	
	A
	V-V-F-F
Você acertou!
A alternativa que apresenta a sequência correta é a letra a). A afirmativa I é verdadeira porque todo ponto do conjunto XX é ponto interior de XX. A afirmativa II é verdadeira porque existe R>0R>0, por exemplo, R=3R=3 tal que |x|<3|x|<3 para todo x∈Xx∈X. A afirmativa III é falsa porque o conjunto XX não é fechado e nem limitado. A afirmativa IV é falsa porque o complementar do conjunto XX não é aberto, por exemplo, x=√2x=2 pertence ao complementar de XX, mas não é ponto interior do complementar. (livro-base, p. 88-91).
	
	B
	V-V-V-F
	
	C
	F-F-V-V
	
	D
	F-V-F-F
	
	E
	V-F-V-F
Questão 5/10 - Análise Matemática
Leia o fragmento de texto a seguir:
 
“Utilizaremos, porém, com frequência cada vez maior, a linguagem geométrica segundo a qual nos referimos ao corpo RR como ‘a reta’, diremos ‘ponto’ em vez de ‘número real’, traduziremos ‘a<ba<b’ por ‘aa está à esquerda de bb’, dados x,y∈Rx,y∈R, interpretaremos o valor absoluto |x−y||x−y| como ‘distância do ponto xx ao ponto yy’ e, finalmente, veremos o intervalo [a,b][a,b] como o segmento de reta cujos extremos são os pontos aa e bb.”
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:
LIMA, E. L., Curso de Análise. 14. ed. v 1. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada, 2013. p. 162.
 
Conforme os conteúdos do livro-base Análise Matemática sobre noções topológicas da reta, analise as afirmativas a seguir e marque V para as afirmativas verdadeiras e F para as afirmativas falsas.
 
I.   ( ) O ponto x=1x=1 é um ponto interior do conjunto X={1}∪[32 , 2]X={1}∪[32 , 2].
II.  ( ) O conjunto X={n | n∈N}X={n | n∈N} não possui pontos de acumulação.
III. ( ) O ponto x=0x=0 é um ponto de acumulação do conjunto X={12 | n∈N}X={12 | n∈N}.
IV.  ( ) O ponto x=0x=0 é um ponto de aderência do conjunto X={12 | n∈N}X={12 | n∈N}.
 
Assinale a alternativa que contém a sequência correta:
Nota: 10.0
	
	A
	V-V-F-V
	
	B
	F-F-V-V
	
	C
	V-F-F-V
	
	D
	V-F-V-F
	
	E
	F-V-V-V
Você acertou!
A alternativa que contém a sequência correta é a letra e). A afirmativa I está incorreta, pois qualquer intervalo centrado em x=1x=1 não está contido no conjunto XX. A afirmativa II está correta, pois para qualquer x∈Rx∈R, com x∉Xx∉X, é fácil ver que existem vizinhanças de xx que não contém pontos de XX e para os pontos x∈Xx∈X, existem vizinhanças de xx que contém apenas o ponto xx. Logo, não existem pontos de acumulação. A afirmativa III está correta, pois qualquer vizinhança de zero contém um ponto diferente de zero que pertence ao conjunto XX. A afirmativa IV está correta pois zero é o limite da sequência (1n)(1n) que é formada por pontos de XX. (livro-base, Capítulo 3).
Questão 6/10 - Análise Matemática
Atente para a seguinte citação:
 
“Na matemática, o limite tem o objetivo de determinar o comportamento de uma função à medida que ela se aproxima de alguns valores, sempre relacionando os pontos xx e yy”.
                       
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:<http://mundoeducacao.bol.uol.com.br/matematica/limite-uma-funcao.htm>. Acesso em: 21 jun. 2017.
Dada a função f:R→Rf:R→R tal que f(x)=xlnxf(x)=xln⁡x
Levando em consideração as informações do dado fragmento de texto e os conteúdos do livro-base Análise Matemática sobre limite e continuidade, responda:
Qual é o limite da função dada quando x tende a 1 (um)?
Nota: 10.0
	
	A
	−1−1
	
	B
	−∞−∞
	
	C
	∞∞
	
	D
	1
	
	E
	0
Você acertou!
Temos que limx→1x=1limx→1x=1 e limx→1lnx=ln1=0limx→1ln⁡x=ln⁡1=0. Assim limx→1x⋅lnx=1⋅0=0limx→1x⋅ln⁡x=1⋅0=0 (livro-base, p. 93)
Questão 7/10 - Análise Matemática
Considere a seguinte informação:
 
Seja  uma função definida por partes da seguinte forma:
 f(x)=⎧⎨⎩x2−3x+2x−2,x≠2kx=2f(x)={x2−3x+2x−2,x≠2kx=2
 
Fonte: texto elaboradopelo autor da questão.
Considerando a função dada no texto e os conteúdos estudados no livro-base Análise Matemática sobre limite e continuidade, assinale qual valor deve ser dado para que a função dada seja contínua em x = 2:
Nota: 10.0
	
	A
	k=2k=2
	
	B
	k=0k=0
	
	C
	k=1k=1
Você acertou!
Para que a função seja contínua em x=2x=2 devemos ter: limx→2f(x)=f(2)limx→2f(x)=f(2). Temos que limx→2f(x)=limx→2x2−3x+2x−2=limx→2(x−2)(x−1)x−2=limx→2(x−1)=1limx→2f(x)=limx→2x2−3x+2x−2=limx→2(x−2)(x−1)x−2=limx→2(x−1)=1. Portanto, devemos definir f(2)=1f(2)=1. (livro-base, p. 99).
	
	D
	k=−1k=−1
	
	E
	k=−2k=−2
Questão 8/10 - Análise Matemática
Atente para a seguinte citação:
 
“Foi enquanto se dedicava ao estudo de algumas destas funções que Fermat deu conta das limitações do conceito clássico de reta tangente a uma curva como sendo aquela que encontrava a curva num único ponto. Tornou-se assim importante reformular tal conceito e encontrar um processo de traçar uma tangente a um gráfico num dado ponto - esta dificuldade ficou conhecida na História da Matemática como o ‘Problema da Tangente’”.
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: <http://www.somatematica.com.br/historia/derivadas.php>. Acesso em: 20 jun. 2017.
 
De acordo com as informações dadas e os conteúdos do livro-base Análise Matemática sobre Derivadas, sendo f′(x0)=limx→x0[f(x)−f(x0)]x−x0f′(x0)=limx→x0[f(x)−f(x0)]x−x0, assinale a alternativa que contém o limite que devemos calcular para encontrar a derivada da função f(x)=x2−1f(x)=x2−1 no ponto x=2x=2:
Nota: 10.0
	
	A
	limx→2(x2−1)±5x−2limx→2(x2−1)±5x−2
	
	B
	limx→2(x2−1)−3x−2limx→2(x2−1)−3x−2
Você acertou!
Como f(2)=3f(2)=3 e f′(2)=limx→2f(x)−f(2)x−2f′(2)=limx→2f(x)−f(2)x−2 quando esse limite existir, então, limx→2(x2−1)−3x−2limx→2(x2−1)−3x−2(livro-base p.113-115)
	
	C
	limx→0(x2−1)−2x−2limx→0(x2−1)−2x−2
	
	D
	limx→2(x2−1)x−2limx→2(x2−1)x−2
	
	E
	limx→0(x2−1)xlimx→0(x2−1)x
Questão 9/10 - Análise Matemática
“Informalmente: limx→af(x)=Llimx→af(x)=L quer dizer que se pode tornar f(x)f(x) tão próximo de LL quanto se queira desde que se tome x∈Xx∈X suficientemente próximo, porém diferente, de aa.”
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: 
LIMA, E.L. Análise Real . 4. ed. Rio de Janeiro: IMPA, 1999. p. 61.}
De acordo com os conteúdos do livro-base Análise Matemática, assinale a alternativa correta.
Nota: 10.0
	
	A
	Seja f:R−{2}→Rf:R−{2}→R, f(x)=x+3f(x)=x+3, então o valor de limx→2(x+3)limx→2(x+3) é 11.
	
	B
	Seja f:X→Rf:X→R e x0∈X′x0∈X′. Assim, se limx→x0f(x)=L1limx→x0f(x)=L1 e limx→x0f(x)=L2limx→x0f(x)=L2, então L1≠L2L1≠L2.
	
	C
	Sejam as funções f:X→Rf:X→R e g:X→Rg:X→R. Se limx→x0f(x)=L1limx→x0f(x)=L1 e limx→x0g(x)=L1limx→x0g(x)=L1, então limx→x0f(x)g(x)=L1+L2limx→x0f(x)g(x)=L1+L2.
	
	D
	Seja a função f(x):X→Rf(x):X→R então limx→x0k⋅f(x)=limx→x0f(x)klimx→x0k⋅f(x)=limx→x0f(x)k.
	
	E
	Sejam ff e g:R−{2}→Rg:R−{2}→R definidas por f(x)=3x+1f(x)=3x+1 e g(x):x+1g(x):x+1 e os limites limx→2f(x)=7limx→2f(x)=7 e limx→2g(x)=3limx→2g(x)=3 então limx→23x+1x+1=limx→2(3x+1)limx→2(x+1)=73limx→23x+1x+1=limx→2(3x+1)limx→2(x+1)=73.
Você acertou!
Sejam as funções f:X→Rf:X→R e g:X→Rg:X→R. Se limx→x0f(x)=L1limx→x0f(x)=L1 e limx→x0g(x)=L2limx→x0g(x)=L2 com L2≠0L2≠0, então limx→x0f(x)g(x)=L1L2limx→x0f(x)g(x)=L1L2. (Livro-base p. 93 a 95)
Questão 10/10 - Análise Matemática
Observe o gráfico da função f(x)=x2f(x)=x2 e da sua reta tangente no ponto x=1x=1.
Fonte: Imagem produzida pelo autor da questão.
 
Considerando as informações dadas e os conteúdos do livro-base Análise Matemática sobre Derivadas, assinale a alternativa que contém a equação da reta tangente ao gráfico da função f(x)f(x) no ponto x=1x=1:
Nota: 10.0
	
	A
	y=−2x+1y=−2x+1
	
	B
	y=3x–32y=3x–32
	
	C
	y=2x–1y=2x–1
Você acertou!
A alternativa correta é letra c. Temos que f′(x)=2xf′(x)=2x, logo, f′(1)=2f′(1)=2 é a inclinação da reta tangente. No ponto x=1x=1 temos y=f(1)=1y=f(1)=1. Assim a equação da reta tangente é: (y−1)=2(x−1)(y−1)=2(x−1), isto é: y=2x−1y=2x−1. (livro-base, p. 111-113).
	
	D
	y=−x+3y=−x+3
	
	E
	y=−x+4y=−x+4