Buscar

TEMAS 1 A 5 FUND. DE QUÍMICA ORGÂNICA

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 353 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 353 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 353 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

DESCRIÇÃO
Apresentação das principais funções orgânicas, suas nomenclaturas e características mais
importantes.
PROPÓSITO
Reconhecer as principais funções orgânicas, estabelecendo uma conexão entre seus nomes e
suas estruturas, bem como as características mais importantes desses compostos, o que
fornece a base fundamental para entendermos as reações orgânicas no laboratório e no nosso
organismo.
OBJETIVOS
MÓDULO 1
Reconhecer os hidrocarbonetos e suas propriedades
MÓDULO 2
Identificar os confôrmeros dos diversos alcanos e cicloalcanos e suas estabilidades
MÓDULO 3
Descrever as principais funções oxigenadas e nitrogenadas em química orgânica e suas
principais características
MÓDULO 4
Identificar as principais funções sulfuradas e halogenadas da química orgânica e suas
características mais relevantes
INTRODUÇÃO
IMPORTÂNCIA DAS CLASSES DE COMPOSTOS
Neste tema, vamos conhecer as classes de compostos mais importantes da química orgânica,
as maneiras de representar estruturas químicas, de forma que todos possam entendê-las, e as
principais características dessas substâncias. Vamos aprender a correlacionar o nome de uma
substância à sua estrutura química, além de compreender as diferenças tridimensionais em
cada molécula e a forma como isso afeta sua estabilidade. Veremos a maneira pela qual os
compostos feitos apenas por átomos de carbono e hidrogênio são nomeados, bem como as
substâncias mais complexas, contendo átomos de oxigênio, nitrogênio, enxofre e halogênios.
Vamos aprender a importância dessas classes de compostos não só para a química, mas para
a natureza, o nosso organismo e o desenvolvimento de tecnologias na nossa sociedade.
MÓDULO 1
 Reconhecer os hidrocarbonetos e suas propriedades
OS HIDROCARBONETOS
A química orgânica apresenta uma enorme variedade de substâncias divididas em diversas
classes de compostos químicos, sendo os hidrocarbonetos os mais simples dentre eles.
Hidrocarbonetos são compostos orgânicos formados exclusivamente por átomos de carbono
e hidrogênio, podendo conter apenas ligações simples (alcanos), pelo menos uma ligação
dupla (alcenos), pelo menos uma ligação tripla (alcinos), ou ainda serem compostos
aromáticos.
Vamos estudar o que são esses compostos, suas propriedades e seus nomes mais à frente.
Em primeiro lugar, no entanto, é importante que saibamos como representar suas estruturas
químicas.
 
Foto: Shutterstock.com
 Imagem Ilustrativa.
REPRESENTAÇÃO DAS MOLÉCULAS
ORGÂNICAS
 
Imagem: Shutterstock.com
 Imagem Ilustrativa para Hexano.
Existem várias maneiras de representar os compostos orgânicos. Em geral, as ligações
covalentes entre os diferentes átomos são indicadas por linhas que os conectam. Um modo de
representar seria através da estrutura planar, na qual cada um dos átomos é mostrado; porém,
essa maneira é trabalhosa, entediante e, muitas vezes, acaba confundindo o leitor, em vez de
facilitar o entendimento. A Figura 1 exemplifica esse tipo de representação (note que a ligação
foi aumentada para permitir a representação dos átomos de hidrogênio sem que houvesse
sobreposição).
 
Imagem: Anna Silva
 Figura 1. Representação gráfica de uma 
substância em estrutura planar.
A segunda maneira de representação que veremos são as estruturas condensadas. Nesse tipo
de estrutura, não há representação de todas as ligações covalentes presentes na molécula. Em
vez disso, as ligações ficam subentendidas e faz-se uma representação mais simples utilizando
CH3 para representar os átomos de carbono ligados a três átomos de hidrogênio, CH2 para
representar aqueles ligados a dois átomos de hidrogênio e CH para átomos de carbono ligados
a apenas um átomo de hidrogênio. Ramificações podem ou não ter a ligação covalente
representada. Vamos ver o 2-metilbutano, mesma estrutura do composto da Figura 1,
representado de forma condensada na Figura 2.
 
Imagem: Anna Silva
 Figura 2. Representação gráfica de uma substância 
em estrutura condensada.
A forma mais simples de representar os compostos orgânicos, no entanto, é através da
estrutura de linha de ligação. Nestas estruturas, os átomos de carbono são representados
pelas pontas das linhas, e os hidrogênios ligados a eles ficam ocultos, respeitando o fato de
que o átomo de carbono faz quatro ligações covalentes. Embora não seja necessário, os
átomos de carbono e hidrogênio podem ser representados para evidenciar ou dar ênfase à
parte da estrutura. Qualquer átomo que não seja de carbono ou hidrogênio deve ser
obrigatoriamente representado. A Figura 3 traz dois exemplos:
 
Imagem: Anna Silva
 Figura 3. Exemplos de substâncias representadas em estrutura planar e em estrutura de
linha de ligação. 
Os carbonos estão apontados pelas setas.
As representações das estruturas de linha de ligação são, em geral, as mais utilizadas pela
facilidade em desenhá-las e pela clareza, uma vez que há uma pequena quantidade de átomos
evidenciados. Agora que já sabemos representar as estruturas orgânicas de maneira clara,
vamos conhecer as diferentes classes de hidrocarbonetos, seus nomes e suas propriedades.
ALCANOS
Alcanos são hidrocarbonetos compostos exclusivamente por carbono e hidrogênio e que
contêm apenas ligações simples, ou seja, são compostos saturados. Sua fórmula estrutural
segue a regra CnH2n+2, ou seja, um composto com um único carbono terá fórmula CH4, com
dois carbonos C2H6, e assim sucessivamente. Vamos aprender a nomeá-los?
 
Foto: Shutterstock.com
 Imagem Ilustrativa.
NOMENCLATURA DE ALCANOS
A nomenclatura em química orgânica por muito tempo foi dada em homenagem a pessoas ou
ao material do qual derivava o composto, como é o caso da ureia, presente na urina. Conforme
a química evoluiu, no entanto, surgiu a necessidade de criar um parâmetro universal para
nomear os compostos de maneira que todos fossem capazes de desenhar sua estrutura
através do nome.
Várias tentativas foram feitas ao longo dos anos a fim de uniformizar os parâmetros, as
medidas e os símbolos utilizados na química mundial e, hoje, temos a União Internacional de
Química Pura e Aplicada ((IUPAC – sigla em inglês)) .
 SAIBA MAIS
A IUPAC é uma organização internacional que é autoridade em determinar uma série de regras
para a padronização da química, inclusive a nomenclatura de compostos. Como os alcanos
são as estruturas com a nomenclatura mais simples na química orgânica, utilizaremos essa
classe como exemplo para entender vários aspectos comuns a todos os compostos
orgânicos.
É importante observar, no entanto, que, de tempos em tempos, a IUPAC reavalia o sistema de
nomenclatura dos compostos orgânicos. Existem as recomendações de 1979, 1993 e, mais
recentemente, de 2013. Aqui, procuramos seguir as recomendações mais recentes e, por isso,
pode ser que, ao estudar por livro-texto ou outro material, haja divergências quanto à maneira
de nomear alguns compostos.
ALCANOS LINEARES
Vamos começar pelo fato de que o nome de todos os alcanos, sem exceção, terminará com
o sufixo –ano. Em seguida, é necessário entender que a nomenclatura depende do número de
carbonos da molécula e que eles são representados por radicais que derivam do latim e do
grego e, por isso, podem soar pouco comuns a princípio. Compostos com um, dois, três, quatro
e cinco carbonos terão, respectivamente, os seguintes radicais: met‒, et‒, prop‒, but‒ e
pent‒. A Tabela 1 traz o nome do alcano linear e o número de carbonos em sua estrutura.
 
Imagem: Anna Silva
 Tabela 1. Nome dos alcanos lineares segundo o número de carbonos em sua estrutura.
Existem ainda substituintes denominados grupo alquila. O grupo alquila é formado,
essencialmente, por alcanos com um átomo de hidrogênio a menos, e apresenta os mesmos
radicais de número de carbonos, porém com a terminação ‒ila (ou –il). Sendo assim, o CH3‒
derivado do metano é denominado metila, o CH3CH2‒ derivado do etano é etila e assim
sucessivamente. A Figura 4 traz alguns exemplos (a linha ondulada mostra onde a ligaçãoserá
formada).
 
Imagem: Anna Silva
 Figura 4. Exemplos de grupos alquila derivados dos 
4 menores alcanos lineares.
 
Imagem: Anna Silva
 Figura 5. Grupos alquila derivados do propano.
Os alcanos com três, quatro e cinco carbonos podem ainda perder um átomo de hidrogênio em
mais de uma posição dando origem a diferentes grupos alquila. A IUPAC aceita alguns desses
nomes, que são frequentemente utilizados no cotidiano da química e, portanto, serão
apresentados aqui. Vimos na Figura 4 a propila formada pela perda de um hidrogênio na ponta
da cadeia, porém um hidrogênio do carbono central também pode ser perdido, dando origem
ao grupo isopropila (Figura 5).
Da mesma forma, o butano e o isobutano podem perder um hidrogênio em quatro posições
diferentes ao todo, dando origem a quatro grupos alquila distintos, a n-butila, a isobutila, a
sec-butila e a tert-butila. A Figura 6 traz as estruturas desses grupos.
 
Fonte: Shutterstock
 Figura 6. Grupos alquila derivados do butano e isobutano.
O grupo alquila será particularmente importante para a nomenclatura dos compostos
ramificados que veremos a seguir.
ALCANOS RAMIFICADOS
Para alcanos ramificados, devemos obedecer a uma série de regras que analisaremos
individualmente, etapa a etapa.
1ª etapa: identificar a cadeia principal da molécula, ou seja, aquela com o maior número de
carbonos lineares. O número de carbonos nessa cadeia determinará o radical utilizado no
nome do composto (met, et, prop, but etc.). É importante observar que nem sempre a cadeia
principal estará óbvia. A Figura 7 traz exemplos:
 
Imagem: Anna Silva
 Figura 7. Exemplos de estrutura com a cadeia principal 
marcada em rosa e substituintes em preto.
Pode ser que haja duas cadeias de mesmo tamanho. Neste caso, como decidir qual delas é a
principal? Deve-se considerar como principal aquela com o maior número de
ramificações, ou seja, se uma tem apenas uma ramificação e a outra tem duas, a última é
a cadeia principal. Veja a Figura 8:
 
Imagem: Anna Silva
 Figura 8. Exemplos de como identificar a cadeia principal em um composto.
E se os carbonos formarem um anel, levando a um composto cíclico? Neste caso, o prefixo
“ciclo” deverá ser adicionado antes do nome da cadeia principal. Um hexano cíclico, por
exemplo, é, então, um ciclo-hexano, um pentano cíclico é um ciclopentano, e assim por diante.
É importante notar que o anel tem preferência sobre a cadeia carbônica, mesmo que tenha
menor número de carbonos (nos casos em que ambos são formados pelos mesmos
elementos). Isso quer dizer que, se houver dez carbonos em cadeia aberta ligados a um ciclo-
hexano, o composto será um ciclo-hexano substituído. Veja os exemplos da Figura 9.
 
Imagem: Anna Silva
 Figura 9. Exemplos de compostos cíclicos.
2ª etapa: numerar os carbonos da cadeia principal. Essa numeração começa no carbono
mais próximo ao substituinte. A Figura 10 exemplifica a numeração:
 
Imagem: Anna Silva
 Figura 10. Exemplos de como numerar a cadeia carbônica principal.
E se o composto tiver mais de uma ramificação? Comece a numeração pela extremidade que
forneça as posições das ramificações nos carbonos de menor número possível. Veja o exemplo
da Figura 11:
 
Imagem: Anna Silva
 Figura 11. Como numerar os 
carbonos de uma cadeia carbônica 
com múltiplas ramificações.
Caso o composto seja cíclico, comece a contar os carbonos de maneira que aquele que
apresenta a substituição seja o número um. Caso haja mais de um substituinte, numere os
carbonos de maneira que eles estejam sempre no carbono de menor número, assim como nos
hidrocarbonetos de cadeia aberta. Se for possível que dois substituintes apresentem a mesma
numeração, determine o número do carbono a partir da ordem alfabética. Os exemplos na
Figura 12 vão facilitar seu entendimento.
 
Imagem: Anna Silva
 Figura 12. Como numerar carbonos em compostos cíclicos.
3ª etapa: localize o(s) substituinte(s) e o número do carbono ligado a eles. Os grupos
alquila que estiverem ligados à cadeia principal perdem a letra “a” quando passam a fazer parte
do nome do composto, ou seja, metila vira metil, etila vira etil, e assim por diante. A Figura 13
mostra a identificação.
 
Imagem: Anna Silva
 Figura 13. Como nomear grupos substituintes utilizando o nome do grupo alquila e o
número do carbono.
Se dois substituintes estiverem ligados ao mesmo carbono, eles receberão o número
correspondente àquele carbono, e este número aparecerá duas vezes no nome. Além disso,
se um composto tiver o mesmo substituinte ligado a carbonos diferentes, utilizam-se os
prefixos di, tri, tetra etc. para nomeá-los, e o número se repete quantas vezes forem
necessárias. Quando o substituinte é grande e não pode ser nomeado como um dos grupos
alquila que vimos antes, trate-o como se fosse um composto à parte e ponha o nome entre
parênteses. Na Figura 14, temos o exemplo do substituinte “2-metilpropil”.
Veja a Figura 14 para entender melhor:
 
Imagem: Anna Silva
 Figura 14. Como nomear substituintes múltiplos.
4ª etapa: escreva o nome do composto como se fosse uma única palavra. Não há
espaços em nomes de compostos orgânicos. Os números devem ser separados entre si
por vírgulas, e hifens separam as palavras dos números. A localização e nome dos
substituintes (Etapa 3) aparecem primeiro e, em seguida, o nome do alcano da cadeia
principal. No caso de compostos com vários substituintes, eles aparecem no nome do
composto em ordem alfabética (não são considerados para a ordem alfabética os prefixos di, tri
etc. nem os prefixos sec- e tert-). A Figura 15 traz alguns compostos com seus respectivos
nomes seguindo as regras IUPAC:
 
Imagem: Anna Silva
 Figura 15. Exemplos de alcanos e cicloalcanos com seus respectivos nomes IUPAC.
PROPRIEDADES DOS ALCANOS
Os alcanos eram também conhecidos como parafinas devido à sua baixa afinidade a outros
compostos. Essa característica é importante e permite que os alcanos sejam muito utilizados
como solventes apolares em laboratórios. No entanto, essa classe de compostos é capaz de
reagir com oxigênio, halogênios e algumas outras substâncias se as condições forem ideais.
A reação entre alcanos e oxigênio é particularmente importante, pois permite a geração de
energia. Essas reações são parte de nosso cotidiano quando acendemos o fogão ou dirigimos
nossos carros e são chamadas de combustão.
 
Foto: Shutterstock.com
 Imagem Ilustrativa.
O butano e o propano são os principais componentes do gás de cozinha, e o metano é o
principal componente do gás natural, enquanto a gasolina é uma mistura complexa de alcanos.
A reação entre o metano e o oxigênio molecular é mostrada no Esquema 1, bem como a
enorme quantidade de energia liberada.
 
Imagem: Anna Silva
 Esquema 1. Reação de combustão do metano.
Quanto aos pontos de ebulição e fusão, essas são propriedades que apresentam relação direta
com o tipo de força intermolecular que os compostos fazem. No caso dos alcanos, essas forças
são muito fracas e provêm de pequenas variações de distribuição nas nuvens eletrônicas das
moléculas, levando a pequenos dipolos temporários. Isolados, esses dipolos são muito fracos,
porém uma grande quantidade deles gera interação suficiente para que determinada
substância permaneça coesa.
Isso quer dizer que, quanto maior a cadeia carbônica de um alcano, maior seu ponto de
ebulição e de fusão, como podemos ver na Tabela 2. À temperatura ambiente (25°C), alcanos
de até quatro carbonos são todos gases, o que justifica o uso do propano e do butano como
gás de cozinha, por exemplo. Do pentano ao heptadecano, todos são líquidos e, por isso,
utilizados como combustível na gasolina ou solventes em laboratórios. Alcanos com mais de 18
carbonos são sólidos e podem ser encontrados na parafina das velas, por exemplo.
 
Imagem: Anna Silva
 Tabela 2. Relação entre o número de carbonos e as propriedades físicas dos alcanos.
O aumento no número de ramificações da cadeia, poroutro lado, faz com que os pontos de
fusão e ebulição sejam mais baixos, pois diminuem a área superficial dos compostos e
prejudicam as interações entre as moléculas. O pentano, por exemplo, tem ponto de ebulição
36°C, enquanto o isopentano (2-metilbutano), também com cinco carbonos, tem ponto de
ebulição igual a 27,8°C.
Para os cicloalcanos, a tendência no ponto de ebulição se mantém: quanto maior o anel, maior
o ponto de ebulição. Além disso, seus pontos de ebulição e fusão são mais elevados que os de
alcanos de cadeia aberta com o mesmo número de carbonos. O hexano, por exemplo, tem
ponto de ebulição igual a 68,7°C, enquanto o do ciclo-hexano é 80,7°C. Já o octano tem ponto
de ebulição igual a 125,6°C, enquanto o do ciclo-octano é 149°C. O ponto de fusão, no
entanto, não segue tendência nenhuma, porque as diferentes formas dos cicloalcanos alteram
a maneira como seus cristais estão empacotados, e essa característica é importante para o
valor do ponto de fusão.
Os alcanos compõem a classe que apresenta menor densidade entre todos os compostos
orgânicos, fazendo com que os mesmos flutuem em água, de maneira que quando ocorrem
vazamentos de petróleo, por exemplo, vemos as manchas flutuando na superfície da água.
ALCENOS
Alcenos são hidrocarbonetos que apresentam pelo menos uma dupla ligação em sua estrutura.
A presença dessa ligação permite que os alcenos sofram reações de adição, oxidação e
redução, por exemplo, sendo bem mais reativos que os alcanos.
 
Imagem: Shutterstock.com
 Ilustração 3D do composto químico do alceno.
Como dissemos antes, a nomenclatura de todos os compostos daqui para a frente serão
baseadas nas regras vistas anteriormente. Para dar nome a esses compostos, as regras são
as mesmas de antes, com pequenas variações:
A terminação dos alcenos é sempre - eno.
A cadeia principal será a maior cadeia carbônica, mesmo que esta não inclua a dupla
ligação. Caso a cadeia principal não inclua a dupla ligação, o composto será nomeado
como um alcano substituído.
Os carbonos serão numerados a partir da extremidade mais próxima à dupla ligação. Se
a dupla ligação estiver à mesma distância das duas extremidades, escolhe-se o
carbono mais próximo à ramificação.
A posição da dupla ligação deve ser indicada no nome do composto logo antes do nome
da cadeia principal e pelo carbono de menor número.
Se houver mais de uma dupla ligação, o composto deverá ser nomeado como dieno,
trieno, e assim sucessivamente.
Cicloalcenos deverão ter seus carbonos numerados de forma que a dupla ligação esteja
sempre entre os carbonos um e dois e que os substituintes tenham o menor número
possível.
A Figura 16 traz alguns exemplos de alcenos e seus respectivos nomes.
 
Imagem: Anna Silva
 Figura 16. Exemplos de alcenos com seus respectivos nomes IUPAC.
As propriedades físico-químicas dos alcenos, como ponto de fusão e ebulição, seguem as
mesmas tendências que vimos anteriormente para os alcanos. O eteno, o menor alceno
possível, por exemplo, apresenta ponto de ebulição igual a -104°C, enquanto o do 1-hexeno é
63,4°C e o do ciclo-hexeno é 83°C.
ALCINOS
 
Imagem: Shutterstock.com
 Ilustração 3D do composto químico alcino.
Alcinos são hidrocarbonetos que apresentam pelo menos uma tripla ligação em sua estrutura.
Assim como os alcenos, os alcinos são mais reativos que os alcanos, podendo participar de
reações de adição, oxidação, redução e apresentando até certo caráter ácido devido à
presença da tripla ligação. A nomenclatura desses compostos também segue os princípios
determinados para os alcanos, com algumas pequenas diferenças:
A terminação dos alcinos é sempre - ino.
A cadeia principal será a maior cadeia carbônica, mesmo que a tripla ligação não esteja
incluída. No caso da tripla ligação não fazer parte da cadeia principal, o composto deverá
ser nomeado como um alcano substituído.
A numeração dos carbonos começa pelo que estiver mais próximo à tripla ligação, de
forma que os carbonos tenham os menores números possíveis.
Se houver mais de uma tripla ligação, eles deverão ser denominados di-inos, tri-inos, e
assim por diante.
Se houver duplas e triplas ligações na mesma estrutura, a numeração dos carbonos deve
começar pela extremidade que estiver mais próxima a uma das duas ligações múltiplas.
Caso as ligações dupla e tripla estejam à mesma distância das extremidades, a contagem
se inicia pela extremidade mais próxima à dupla ligação.
As propriedades físico-químicas dos alcinos seguem a mesma tendência dos alcanos e
alcenos, ou seja, os pontos de fusão e ebulição aumentarão com o tamanho da cadeia, e
ramificações diminuirão esses valores. A Figura 17 traz alguns exemplos de alcinos e seus
respectivos nomes.
 
Imagem: Anna Silva
 Figura 17. Exemplos de alcinos e seus respectivos nomes IUPAC.
Agora que sabemos dar nome e identificar os alcanos, alcenos e alcinos, vamos ver, no módulo
2, como os alcanos se comportam no espaço e sua estabilidade.
O especialista Luiz Américo Mota faz uma apresentação, por meio de exemplo, da
nomenclatura e das propriedades dos hidrocarbonetos:
VERIFICANDO O APRENDIZADO
1. ASSINALE A ALTERNATIVA QUE CONTÉM O NOME IUPAC CORRETO
DO COMPOSTO ABAIXO:
A) 4-etil-7,7-dimetiloctano.
B) 2-dimetil-5-etiloctano.
C) 5-etil-2,2-dimetiloctano.
D) 2,3-dimetil-5-etiloctano.
E) 2,2-dimetil-5-etiloctano.
2. CONSIDERANDO AS PROPRIEDADES DOS HIDROCARBONETOS,
ASSINALE A ALTERNATIVA CORRETA:
A) Os alcanos não sofrem nenhum tipo de reação química.
B) Alcenos e alcinos sofrem apenas reações de combustão.
C) O ponto de ebulição de todos os hidrocarbonetos diminui com o aumento do número de
carbonos.
D) Considerando número igual de carbonos, um alcano de cadeia linear terá ponto de ebulição
mais alto que um alcano com ramificações.
E) Hidrocarbonetos fazem ligações de hidrogênio e, por isso, têm alto ponto de ebulição.
GABARITO
1. Assinale a alternativa que contém o nome IUPAC correto do composto abaixo:
A alternativa "C " está correta.
 
A cadeia principal é a mais longa, com oito carbonos, e, por isso, é um octano. Devemos
começar a numeração dos carbonos pela extremidade que permita os menores números para
os substituintes, então temos duas metilas na posição 2 e uma etila na posição 5. Como o
nome deve ser escrito com os substituintes ordenados por ordem alfabética, temos o 5-etil-2,2-
dimetiloctano.
2. Considerando as propriedades dos hidrocarbonetos, assinale a alternativa correta:
A alternativa "D " está correta.
 
O maior número de ramificações diminui a área superficial do composto e, consequentemente,
as interações entre as moléculas, tornando o ponto de ebulição mais baixo.
MÓDULO 2
 Identificar os confôrmeros dos diversos alcanos e cicloalcanos e suas estabilidades
ESTEREOQUÍMICA DE ALCANOS E
CICLOALCANOS
Até o momento, vimos como nomear os hidrocarbonetos, a classe de compostos orgânicos
mais simples e suas propriedades. Quando falamos desses compostos, indicamos suas
estruturas no plano do papel, ou seja, em duas dimensões. Na vida real, por outro lado, esses
compostos existem em três dimensões, e seus átomos podem variar de posição espacial. A
estereoquímica estuda exatamente essas variações tridimensionais que podem ocorrer e a
forma como elas afetam as propriedades dos compostos, o que é particularmente importante
no meio biológico.
 
Foto: Shutterstock.com
Dois grupos conectados por uma ligação simples podem girar em torno do eixo da ligação de
maneira que os átomos vão assumir posições diferentes no espaço e darão origem a diferentes
confôrmeros (isômeros conformacionais).
Esses confôrmeros têm exatamente a mesma conexão entre os átomos, modificando apenas a
geometria, e se interconvertem tão rapidamente que, em geral, não é possível isolá-los
separadamente.
Existem duas maneiras de representar os confôrmeros: através das representações de
sawhorse (em português, cavalete) ou das projeções de Newman, sendo essa última a mais
utilizada.
SawhorseNas representações de sawhorse, é como se estivéssemos vendo a estrutura de linhas de
ligação de uma maneira tridimensional.
Newman
Já na projeção de Newman, é como se tivéssemos colocado a ligação simples
transversalmente a nossos olhos e estivéssemos encarando o carbono de frente, de modo que
o outro carbono fica atrás.
A Figura 18 exemplifica as duas representações.
 
Imagem: Anna Silva
 Figura 18. Projeção de Newman e representação de sawhorse.
Sabendo como funcionam as representações, vamos ver a estabilidade e os diferentes
confôrmeros dos alcanos.
CONFORMAÇÕES DO ETANO
O etano é o alcano mais simples em que podemos fazer uma análise conformacional, e
começaremos nossa análise por ele. Em geral, dizemos que as ligações simples permitem aos
átomos conectados ter rotação livre em torno do eixo da ligação. No entanto, sabemos pela
prática que existe uma pequena barreira de rotação que torna alguns confôrmeros mais
estáveis.
 
Imagem: Shutterstock.com
No caso do etano, existem duas possibilidades de conformação: estrela (ou alternada), na
qual os átomos estão tão longe quanto possível uns dos outros, levando à menor energia (mais
estável), e eclipsada, em que os átomos estão o mais próximo possível uns dos outros,
levando a um estado de maior energia (menos estável). A Figura 19 mostra as conformações
possíveis.
 
Imagem: Anna Silva
 Figura 19. Possibilidades de confôrmeros para o etano.
A conformação eclipsada é menos estável, pois apresenta a tensão de torção que confere
12kJ/mol a mais de energia para esse confôrmero. Dois fatores contribuem para essa diferença
de energia entre os confôrmeros. O primeiro é a hiperconjugação, uma sobreposição
favorável dos orbitais ligantes e antiligantes dos carbonos, que estabiliza melhor a
conformação estrela, diminuindo sua energia (Figura 20).
 
Imagem: KLEIN, 2016.
 Figura 20. Representação da sobreposição entre orbitais 
ligantes e antiligantes na conformação alternada.
Segundo, a conformação eclipsada apresenta ainda um pequeno impedimento estérico, uma
vez que as nuvens eletrônicas das ligações C-H estão mais próximas umas das outras. Como
sabemos que todas as ligações C-H do etano são iguais, podemos estabelecer que cada
interação hidrogênio-hidrogênio na conformação eclipsada é responsável por um aumento de 4
kJ/mol no nível de energia da estrutura (Figura 21).
 
Imagem: KLEIN, 2016.
 Figura 21. Representação da conformação eclipsada 
e o aumento de energia em relação à forma alternada.
CONFORMAÇÕES DO PROPANO
O propano é um alcano de três carbonos e também pode apresentar as conformações estrela e
eclipsada. No entanto, o nível de energia da conformação eclipsada é ligeiramente maior do
que vimos para o etano, chegando a 14 kJ/mol. Isso se dá porque o propano, por apresentar
três átomos de carbono, terá duas interação hidrogênio-hidrogênio de 4 kJ/mol cada uma, mas
terá também uma interação entre uma ligação C-C (ligação entre C2 e C3 do propano) e uma
ligação C-H que aumenta a tensão de torção para 6 kJ/mol. Veja a figura 22 as conformações
estrela e eclipsada do propano.
 
Imagem: Anna Silva
 Figura 22. Possibilidades de confôrmeros para o propano.
CONFORMAÇÕES DO BUTANO
O butano apresenta quatro carbonos em sua estrutura, e sua análise conformacional é um
pouco mais elaborada que as dos compostos vistos anteriormente. Vamos analisar a ligação
entre os carbonos dois e três (C2 e C3) para entender um pouco melhor sua disposição
espacial.
 
Foto: Shutterstock.com
 Butano.
Quando estudamos as conformações do etano e do propano, vimos que havia duas principais:
a estrela e a eclipsada. No caso do butano, no entanto, essas conformações são ainda
subdivididas de acordo com a posição dos grupos:
ANTI
GAUCHE
ECLIPSADA
ANTI
confôrmero estrela onde as duas metilas terminais estão tão distantes quanto possível
uma da outra.
GAUCHE
javascript:void(0)
javascript:void(0)
javascript:void(0)
confôrmero estrela na qual as duas metilas terminais estão a 60° uma da outra.
ECLIPSADA
confôrmero eclipsado que conta com variações, uma vez que é possível ter a interação
entre as duas metilas terminais ou entre as metilas e hidrogênios, além de uma
hidrogênio-hidrogênio.
A Figura 23 mostra todos os possíveis confôrmeros do butano considerando rotações de 60°
por vez no carbono de trás.
 
Imagem: Anna Silva
 Figura 23. Possibilidades de confôrmeros para o butano.
 
Imagem: Anna Silva
 Figura 23. Possibilidades de confôrmeros para o butano.
Como é possível ver na Figura 23, a forma anti é a de menor energia, mais estável, e a forma
eclipsada, em que as duas metilas estão próximas, é a de maior energia, menos estável. Isso
acontece porque, quando temos a interação entre dois grupos metila, o impedimento estérico
se soma consideravelmente à tensão de torção, elevando a energia e diminuindo a estabilidade
da estrutura. As formas gauche e eclipsada em que as duas metilas estão afastadas
apresentam estados de energia intermediários, sendo a forma gauche ainda menos energética
(e, portanto, mais estável) que qualquer uma das formas eclipsadas.
 ATENÇÃO
É importante ainda pontuar que, quando falamos em maior ou menor estabilidade, não quer
dizer que o composto fique apenas em uma das conformações. Os valores de energia são
baixos o suficiente para que em temperatura ambiente seja possível ultrapassar essas
barreiras energéticas, fazendo com que o composto constantemente mude de confôrmero.
No entanto, é provável que em um dado momento muito mais moléculas anti sejam
encontradas em relação às eclipsadas, por exemplo. Além disso, o modelo de análise
conformacional visto para o butano se aplica a alcanos de cadeia aberta ainda maiores. Ou
seja, para qualquer alcano de cadeia aberta, a conformação estrela com grupos volumosos anti
um ao outro será a mais estável.
CICLOALCANOS: ESTABILIDADE DO ANEL
 
Foto: Shutterstock.com
 Uma renderização em 3d de uma molécula de cicloalcano.
Assim como nos alcanos de cadeia aberta, as estabilidades dos cicloalcanos são diferentes
entre si devido à tensão do anel formado. Existem essencialmente três motivos pelos quais um
anel apresenta tensão:
 
Vamos analisar os casos individualmente, para entender como esses fatores afetam a
estabilidade.
CICLOPROPANO
Por ser formado por apenas três átomos de carbono, o ciclopropano é plano e tem a forma de
um triângulo. Isso quer dizer que seus ângulos internos têm exatamente 60° cada um, o que
leva a uma imensa tensão angular. A existência do ciclopropano é possível, no entanto, pois
ele apresenta ligações angulares, ou seja, os orbitais dos carbonos que fazem a ligação sigma
não se sobrepõem completamente, apenas em pequenas partes e a certo ângulo. Isso faz com
que a molécula apresente ligações mais fracas e maior energia potencial em relação a outros
cicloalcanos.
Embora a tensão angular seja responsável pela maior parte da energia desse composto, há
ainda uma pequena parte que deriva da tensão de torção, uma vez que seus hidrogênios estão
eclipsados. A Figura 24 mostra a projeção de Newman e a estrutura tridimensional do
ciclopropano para facilitar a visualização. Utilizando o modelo de bola e linha, fica claro que, ao
olharmos para dois carbonos, transversalmente à ligação que os une, o de trás fica omitido e
se torna evidente o quão eclipsados estão os hidrogênios dessa estrutura.
 
Imagem: Anna Silva
 Figura 24. Visualização lateral do ciclopropano 3D e sua projeção de Newman.
CICLOBUTANO
O ciclobutano, diferentemente do ciclopropano, não é plano, mas ligeiramente dobrado. Um de
seus carbonos está 25° acima do plano dos demais e, embora isso aumente a tensão angular,
diminui a tensão de torção do anel, pois permite que os hidrogênios do composto não fiquem
completamente eclipsados.
A Figura 25 mostra a projeção de Newman do ciclobutano, bem como a visualização em três
dimensões do que seria a projeção de Newman. Utilizando o modelo de bolae linha, fica claro
que, ao olharmos para dois carbonos, transversalmente à ligação que os une, o de trás fica
omitido e é possível ver que os hidrogênios estão apenas parcialmente eclipsados.
 
Imagem: Anna Silva
 Figura 25. Visualização lateral do ciclobutano 3D e sua projeção de Newman.
CICLOPENTANO
Como falamos anteriormente, o ângulo que um carbono 3 sup faz em uma geometria
tetraédrica é de 109,5° e, quanto mais longe desse valor, maior a tensão angular do
composto. O ciclopentano tem ângulos internos de 108°, ou seja, sua tensão angular é
praticamente nenhuma, e ele poderia ser planar. No entanto, a planaridade levaria a um
aumento na tensão de torção, uma vez que todos os hidrogênios da molécula estariam
eclipsados. Para evitar esse aumento de energia, o pentano tem um de seus carbonos fora do
plano, o que diminui a tensão de torção, uma vez que quase todos os hidrogênios estarão em
conformação estrela com os demais (Figura 26).
 
Imagem: Anna Silva
 Figura 26. Visualização lateral do ciclopentano 3D e sua projeção de Newman.
CICLO-HEXANO
O ciclo-hexano é o mais estável entre todos os cicloalcanos que vimos até o momento. Seus
ângulos internos têm 109,5°, ou seja, exatamente o mesmo ângulo presente na geometria
tetraédrica, o que faz com que o ciclo-hexano não apresente tensão angular. Assim como já
vimos nos outros cicloalcanos, com exceção do ciclopropano, o hexano não é plano e pode
assumir diversas conformações. As três mais importantes são a conformação cadeira, a
bote e a bote torcido.
 
Imagem: Shutterstock.com
 Imagem Ilustrativa para o Ciclo-hexano.
Dentre essas três conformações, a mais estável é a cadeira, na qual, além de não haver
tensão angular, também não há tensão de torção, uma vez que todos os hidrogênios estão em
conformação estrela em relação a seus vizinhos. A Figura 27 ajuda a visualizar melhor essa
conformação.
 
Imagem: Anna Silva
 Figura 27. Visualização lateral do ciclo-hexano na conformação cadeira 3D e sua projeção
de Newman.
A outra possibilidade de conformação para o ciclo-hexano é a conformação bote, a menos
estável das três que citamos anteriormente. Ela tem 30kJ/mol a mais de energia que a cadeira,
e isso se deve à tensão de torção e a um impedimento estérico.
 COMENTÁRIO
Na conformação bote, os hidrogênios estão todos eclipsados, o que gera a tensão de torção, e,
além disso, os hidrogênios no carbono um e no carbono quatro estão próximos o suficiente
para que haja repulsão entre eles, ou seja, impedimento estérico.
A Figura 28 traz uma visualização 3D ao longo da ligação carbono-carbono para que possamos
visualizar os hidrogênios eclipsados e a proximidade dos hidrogênios que leva à repulsão, além
da estrutura de linhas e da projeção de Newman.
 
Imagem: Anna Silva
 Figura 28. Visualização lateral do ciclo-hexano na conformação bote 3D e sua projeção de
Newman.
Embora seja menos estável, a conformação bote do ciclo-hexano apresenta maior mobilidade
que a conformação cadeira e é capaz de se “dobrar” de forma a aliviar parte da tensão de
torção que existe na molécula, bem como a repulsão entre os hidrogênios dos carbonos um e
quatro.
A forma que surge é chamada de bote torcido e, embora seja mais estável que a conformação
bote, ainda é menos estável que a conformação cadeira. Na Figura 29, temos a visualização
3D da estrutura do ciclo-hexano em conformação bote torcido.
 ATENÇÃO
Nesta figura, as partes mais claras estão para longe do observador e as mais escuras, mais
próximas. Isso mostra que, embora possa parecer uma estrutura pouco estável em termos de
conformação, no espaço essa conformação permite o afastamento entre os átomos.
 
Imagem: Anna Silva
 Figura 29. Conformação bote torcido em 3D e estrutura de linha de ligação.
Falamos da maior ou menor estabilidade das diferentes conformações do ciclo-hexano, mas é
importante notar que as barreiras de transição entre uma conformação e outra são baixas o
suficiente para que essa interconversão ocorra à temperatura ambiente e haja um equilíbrio
entre os diferentes confôrmeros. Ainda assim, a conformação cadeira estará presente em
maior quantidade devido à sua maior estabilidade.
CICLO-HEXANOS MONOSSUBSTITUÍDOS
Antes de começarmos a falar das substituições em si, precisamos entender algumas
características que provêm da conformação cadeira do ciclo-hexano, e a principal delas é o
fato de que os substituintes do ciclo-hexano podem estar na posição axial, no plano do anel, ou
na posição equatorial, fora do plano do anel.
Na Figura 30, podemos ver essas ligações na estrutura de linha do ciclo-hexano e ter uma
visão de cima do composto. Podemos ver os hidrogênios equatoriais em volta do anel de
carbonos e três hidrogênios axiais que estão acima do plano da estrutura (os outros três
hidrogênios axiais ficam escondidos pelos carbonos).
 
Imagem: Anna Silva
 Figura 30. Disposição das ligações equatoriais e axiais em um ciclo-hexano cadeira.
A possibilidade de ligações axiais e equatoriais gera a expectativa de vários isômeros para os
ciclo-hexanos monossubstituídos, porém isso não acontece, uma vez que os anéis são móveis
à temperatura ambiente e se interconvertem, fazendo com que ligações axiais passem a ser
equatoriais, e vice-versa (Figura 31).
 
Imagem: Anna Silva
 Figura 31. Interconversão dos ciclo-hexanos cadeira.
Apesar da interconversão, os dois confôrmeros não apresentam a mesma estabilidade. Um
ciclo-hexano monossubstituído terá, em geral, o confôrmero com substituinte na posição
equatorial como mais estável.

Isso acontece porque o substituinte na posição axial leva a um impedimento estérico, que é
resultado das interações 1,3 di-axiais.

Ou seja, no caso do metilciclo-hexano, os hidrogênios da metila estão próximos dos
hidrogênios dos carbonos três e cinco, o que leva à repulsão e ao aumento da energia. Na
posição equatorial, esse impedimento estérico não ocorre (Figura 32).
 
Imagem: Anna Silva
 Figura 32. Interações 1,3-diaxiais.
CICLOALCANOS DISSUBSTITUÍDOS
A presença de dois substituintes nos cicloalcanos abre a possibilidade de que haja isomeria cis
e trans para esses compostos. É importante lembrar que na isomeria cis e trans, a
interconversão só é possível com a quebra de ligações carbono-carbono, o que significa que
esses compostos são diferentes, podem ser isolados e possuem características físico-químicas
diferentes um do outro. O caso mais fácil de visualizar é o do ciclopropano, dada sua
planaridade (Figura 33).
 
Imagem: Autora
 Figura 33. Visualização 3D do cis- e trans- do 1,2-dimetilciclopropano.
Para os ciclo-hexanos, a falta de planaridade pode prejudicar a visualização, porém basta
observar se os substituintes estão em ligações que vão para cima ou para baixo. Caso os dois
estejam na mesma face do anel, são considerados cis; caso estejam em faces diferentes, são
trans. A Figura 34 exemplifica ambos os casos.
 
Imagem: Anna Silva

 
Imagem: Anna Silva
 Figura 34. Como reconhecer compostos cis e trans em ciclo-hexanos dissubstituídos na
conformação cadeira.
Existem três possibilidades de substituição nos ciclo-hexanos dissubstituídos: os 1,2-
dissubstituídos, 1,3-dissubstituídos e 1,4-dissubstituídos. Todos podem apresentar
isômeros trans e cis. Para entender a estabilidade de cada um, precisamos analisar se os
substituintes estarão na posição axial ou equatorial no ciclo-hexano, uma vez que, como já
vimos, a posição axial tende a gerar mais tensão devido ao impedimento estérico.
Para os ciclo-hexanos dissubstituídos, nos quais sempre haverá um substituinte na
posição axial e um na posição equatorial, as duas formas são igualmente estáveis, desde
que os substituintes sejam os mesmos. Caso sejam diferentes, a forma mais estável será
aquela em que o substituinte mais volumoso esteja na posição equatorial, uma vez que nessa
posição haverá menor impedimento estérico. Esse é o caso dos compostos 1,2-cis, 1,3-trans e
1,4-cis.
Paraaqueles nos quais ambos os substituintes estarão em posição axial ou ambos em
posição equatorial, a conformação cadeira mais estável será aquela na qual ambos os
substituintes estejam em posição equatorial. Esse é o caso dos compostos 1,2-trans, 1,3-cis e
1,4-trans.
Entre as conformações cis e trans, deve-se avaliar qual dos dois isômeros permite que ambos
os substituintes fiquem na posição equatorial, de maneira a termos a estrutura de menor
energia. A Tabela 3 resume as possibilidades de posição dos substituintes em cada um dos
isômeros.
 
Imagem: Anna Silva
 Tabela 3. Possibilidades de posicionamento axial/equatorial nos ciclo-hexanos
dissubstituídos. 
Na tabela a=axial, e=equatorial.
CONFORMAÇÕES DE MOLÉCULAS
POLICÍCLICAS
As moléculas policíclicas também apresentam isomeria cis e trans. Vamos usar como exemplo
a decalina, um composto de dez carbonos formado pela união de dois anéis de ciclo-hexano.
Neste composto, por exemplo, a determinação cis e trans é dada pela orientação dos
hidrogênios dos carbonos da ponte (que unem os dois anéis) em relação ao plano do anel. A
Figura 35 traz as diferentes possibilidades.
 
Imagem: Anna Silva
 Figura 35. Estruturas da cis e trans decalina.
A cis-decalina e a trans-decalina não podem ser interconvertidas uma na outra sem que haja
quebra das ligações carbono-carbono e, mais uma vez, apresentam propriedades distintas no
que tange seus pontos de fusão e ebulição, por exemplo. A relação entre elas é a mesma que
vimos para os ciclo-hexanos 1,2-dissubstituídos, ou seja, a forma trans é a mais estável porque
não apresenta interações 1,3-diaxiais.
 VOCÊ SABIA
As estruturas cíclicas estão muito presentes na natureza e em nosso organismo, como é o
caso dos hormônios esteroides, formados por quatro anéis fundidos (Figura 36).
 
Imagem: Anna Silva
 Figura 36. Testosterona, um importante hormônio formado por anéis fundidos.
É importante que sejamos capazes de reconhecer suas estruturas e entender suas diferenças,
mas não se preocupe: a análise conformacional de compostos que apresentam vários anéis é
a mesma feita para compostos ciclo-hexanos simples.
O especialista Luiz Américo Mota discute os fatores que influenciam a conformação e
estabilidade de cicloalcanos.:
VERIFICANDO O APRENDIZADO
1. CONSIDERE OS POSSÍVEIS CONFÔRMEROS DO BUTANO
MOSTRADOS ABAIXO:
ASSINALE A ALTERNATIVA CORRETA:
A) I é o confôrmero eclipsado e é o mais estável dos três.
B) II é o confôrmero gauche e é o menos estável dos três.
C) I e II têm a mesma estabilidade, uma vez que as metilas terminais estão afastadas.
D) III é uma conformação eclipsada na qual as duas metilas terminais estão próximas e, por
isso, é a menos estável.
E) II e III têm a mesma estabilidade porque a proximidade das metilas não afeta a estabilidade
do confôrmero.
2. CONSIDERANDO A ESTABILIDADE DOS DIFERENTES CONFÔRMEROS
DOS CICLO-HEXANOS SIMPLES, MONO E DISSUBSTITUÍDOS, PODEMOS
AFIRMAR QUE:
A) A conformação cadeira é mais estável para o ciclo-hexano, pois não há tensão angular,
tensão de torção nem impedimento estérico.
B) No ciclo-hexanos monossubstituídos, a posição axial é mais estável em função das
interações 1,3-diaxiais.
C) A conformação bote torcido do ciclo-hexano simples é menos estável que a conformação
bote.
D) Nos ciclo-hexanos dissubstituídos, o confôrmero no qual ambos os substituintes estão na
posição axial é o mais estável.
E) Os isômeros trans serão sempre mais estáveis que os isômeros cis, pois os substituintes
estarão sempre na posição equatorial.
GABARITO
1. Considere os possíveis confôrmeros do butano mostrados abaixo:
Assinale a alternativa CORRETA:
A alternativa "D " está correta.
 
I é a conformação anti, mais estável devido ao afastamento das duas metilas terminais ser o
maior possível. II é uma conformação gauche na qual as metilas estão a um ângulo de 60°
uma da outra e é menos estável do que a conformação anti, porém mais estável que as
eclipsadas. III é uma eclipsada na qual as metilas estão o mais próximo possível uma da outra,
levando à menor estabilidade.
2. Considerando a estabilidade dos diferentes confôrmeros dos ciclo-hexanos simples,
mono e dissubstituídos, podemos afirmar que:
A alternativa "A " está correta.
 
A conformação bote apresenta hidrogênios eclipsados, tensão de torção e repulsão entre os
hidrogênios das pontas que ficarão muito próximos. A conformação bote torcido alivia parte da
tensão de torção, mas não chega ao nível de energia e estabilidade da conformação cadeira,
que é a mais estável.
MÓDULO 3
 Descrever as principais funções oxigenadas e nitrogenadas em química orgânica e
suas principais características
 
Imagem: Shutterstock.com
 Conjunto de ilustração de grupo funcional de química orgânica.
OS COMPOSTOS ORGÂNICOS
OXIGENADOS E NITROGENADOS
Existem diversas classes de compostos orgânicos, que são definidos por sua estrutura e
pelos átomos contidos nos mesmos. Vamos agora conhecer os compostos oxigenados e
nitrogenados, que compõem várias classes muito importantes dentro da química orgânica,
aprender a dar nome a eles e conhecer suas propriedades.
ÁLCOOIS
Os álcoois fazem parte das funções oxigenadas e talvez sejam a mais conhecida das classes
de compostos orgânicos, devido a sua enorme participação no nosso cotidiano. O etanol, por
exemplo, é o álcool comercial normalmente utilizado em casa, no álcool em gel e também nas
bebidas alcoólicas.
Nesta classe de compostos, um grupo hidroxila (-OH) está ligado a um carbono sp3, como
podemos ver na Figura 37. Assim, os álcoois são frequentemente considerados como
derivados alquílicos da água ou derivados hidroxilados dos alcanos.
 
Imagem: Anna Silva
 Figura 37. Estrutura geral de um álcool.
 SAIBA MAIS
Esses compostos são ainda subdivididos entre primários, secundários e terciários, de acordo
com o número de ligações carbono-carbono que o carbono ligado à hidroxila faz. Como assim?
Se ele estiver ligado a apenas um outro carbono é considerado primário; se estiver ligado a
dois outros carbonos, secundário; e se estiver ligado a três outros carbonos, é classificado
como terciário.
A Figura 38 traz exemplos dos três tipos de álcoois.
 
Imagem: Anna Silva
 Figura 38. Classificação dos álcoois em primária, secundário e terciário.
 
Imagem: Anna Silva
 Figura 39. Estrutura 
química do fenol.
A hidroxila pode ainda estar ligada a um carbono de anel benzênico, dando origem a um fenol.
Os fenóis têm propriedades ácidas diferentes dos álcoois citados anteriormente e sua
nomenclatura também varia um pouco, então os trataremos sempre de forma separada dos
demais álcoois. A Figura 39 traz a estrutura de um fenol simples.
NOMENCLATURA DOS ÁLCOOIS
Os álcoois seguem as mesmas regras de nomenclatura que vimos para os alcanos, porém a
terminação desses compostos é –ol.
Como nomeá-los então? De maneira geral:
1
2
3
Encontre a cadeia principal de forma que ela seja a maior cadeia carbônica que contém a
hidroxila.
Numere os carbonos começando pela extremidade mais próxima à hidroxila.
Escreva o nome dando aos substituintes a numeração do carbono ao qual estão conectados e
obedecendo à ordem alfabética.
Alguns álcoois possuem nomes comuns que são tão difundidos que acabaram por serem
aceitos pela IUPAC, como pode ser visto na Figura 40.
 
Imagem: Anna Silva
 Figura 40. Álcoois com nomes comuns aceitos pela IUPAC.
No caso dos fenóis, sua estrutura é tratada como um grupo funcional, e o nome da substância
é formada pelos substituintes numerados + fenol. A Figura 41 traz alguns exemplos.
 
Imagem: Anna Silva
 Figura 41. Exemplos de fenóis e suas nomenclaturas.
CARACTERÍSTICAS DOS ÁLCOOIS E FENÓIS
Em termos de estrutura, os álcoois e fenóis apresentam um ângulo de ligação de 109°, muito
próximo ao que a água apresenta, por exemplo. Assim como a água, a polaridade existente na
ligação O-H desses compostos permite que os mesmos façam ligações de hidrogênio entre
suas moléculas,levando a pontos de ebulição consideravelmente mais elevados que suas
contrapartes da classe de alcanos.
 
Foto: Shutterstock.com
 Imagem Ilustrativa.
 ATENÇÃO
Se compararmos o 1-propanol (MM=60) e o butano (MM=58), vemos que o álcool tem ponto de
ebulição igual a 97°C, enquanto o do alcano é de -0,5°C. Outra característica que provém da
capacidade dos álcoois apresentarem forças intermoleculares mais fortes que os alcanos é
que, mesmo o álcool mais simples, o metanol, é um líquido à temperatura de 25°C.
Uma segunda característica importante dos álcoois e fenóis é que esses compostos, assim
como a água, podem reagir como ácidos ou bases, dependendo da condição do meio. Frente a
ácidos fortes, os álcoois tem seu oxigênio da hidroxila protonado, dando origem ao íon oxônio,
enquanto frente a bases ou até mesmo a água, eles se comportam como ácidos fracos,
doando um próton e formando o íon alcóxido ou fenóxido (se for derivado de um fenol). Ambas
as situações estão exemplificadas na Figura 42.
 
imagem: Anna Silva
 Figura 42. Reação ácido-base entre um álcool genérico e a água.
ÉTERES
Éter é uma classe de compostos orgânicos na qual duas cadeias carbônicas estão ligadas a
um único átomo de oxigênio, tendo como estrutura geral R‒O‒R’ (Figura 43). Esses compostos
são razoavelmente estáveis, embora possam dar origem aos peróxidos, compostos com
ligação O‒O, que são extremamente reativos, alguns sendo inclusive explosivos.
 
Imagem: Anna Silva
 Figura 43. Estrutura 
geral dos éteres.
NOMENCLATURA DE ÉTERES
A nomenclatura desses compostos é extremamente simples e pode ser feita de duas formas,
segundo a IUPAC:
1. Se o composto for simples, pode-se colocar o nome dos substituintes sem a terminação “a”
(metil, etil, butil, por exemplo) em ordem alfabética, seguida da palavra “éter”. Assim, temos o
etil metil éter, por exemplo.
2. A parte éter é considerada um substituinte do tipo alcóxido. Então, temos compostos como o
etoxietano, por exemplo. Essa maneira é a preferível segundo as recomendações da IUPAC de
2013.
A Figura 44 traz alguns exemplos de ambas as situações:
 
Imagem: Anna Silva
 Figura 44. Exemplos de éteres e suas respectivas nomenclaturas.
CARACTERÍSTICAS DOS ÉTERES
Os éteres, assim como os álcoois, podem ser considerados derivados carbonílicos da água e,
de fato, apresentam ângulo de ligação bastante próximo ao ângulo tetraédrico. O éter
dimetílico, por exemplo, apresenta ângulo de ligação de 112°.
Essa classe de compostos apresenta pequenos dipolos em sua estrutura devido à presença do
oxigênio, um átomo mais eletronegativo que carbono e hidrogênio. Isso torna suas forças
intermoleculares ligeiramente mais fortes que as encontradas no alcanos, apresentando ponto
de ebulição levemente mais alto. O éter dimetílico (MM=46), por exemplo, tem ponto de
ebulição igual a -25°C, enquanto o propano (MM=44) tem ponto de ebulição a -45°C.
ALDEÍDOS E CETONAS
 
Foto: Shutterstock.com
 Fórmula química estrutural da molécula de benzaldeído 
com óleo de amêndoa. É um aldeído aromático e um 
dos mais úteis industrialmente.
Os aldeídos e cetonas são muito abundantes na natureza e são as substâncias responsáveis
pelo odor característico da baunilha e da hortelã, por exemplo, através da vanilina e da (R)-
carvona, respectivamente (Figura 45).
 
Imagem: Anna Silva
 Figura 45. Exemplos de aldeído e cetona naturais.
Essas classes de compostos são caracterizadas pela presença do grupo carbonila (C=O) em
sua estrutura. A diferença principal está na localização do grupo carbonila: enquanto aldeídos
apresentam este grupo sempre no carbono terminal, as cetonas o apresentam no meio da
cadeia carbônica, como podemos ver na Figura 46.
 
Imagem: Anna Silva
 Figura 46. Estrutura geral de aldeídos e cetonas.
NOMENCLATURA DE ALDEÍDOS
Uma vez que os aldeídos vão apresentar a carbonila sempre na posição terminal, não é
necessário fazer a indicação por número. Se houver outros substituintes, no entanto, a
numeração dos carbonos deverá ser feita de forma que o carbono da carbonila seja o carbono
um. Como fazer:
1. Para os aldeídos de cadeia aberta, basta trocar a terminação –o do alcano correspondente
para a terminação –al, ou seja, um aldeído de três carbonos é o propanal, de quatro carbonos
é o butanal e assim por diante.
2. Caso o grupo –CHO esteja ligado a um anel, aromático ou não, o composto receberá a
terminação –carbaldeído.
A Figura 47 traz alguns exemplos nos quais os nomes comuns aceitos pela IUPAC estão entre
parênteses.
 
Imagem: Anna Silva
 Figura 47. Exemplos de aldeídos e suas respectivas nomenclaturas.
NOMENCLATURA DE CETONAS
Para nomear uma cetona, precisamos retirar a terminação –o do alcano correspondente e
substituí-la por –ona, como descrito nas etapas a seguir:
1. Encontre a maior cadeia carbônica que contém a carbonila (ela será a cadeia principal).
2. Comece a numerar os carbonos de maneira que o carbono carbonílico tenha o menor
número possível.
Veja alguns exemplos na Figura 48:
 
Imagem: Anna Silva
 Figura 48. Exemplos de cetonas e suas respectivas nomenclaturas.
Algumas cetonas também podem ser denominadas por seus nomes comuns, segundo a
IUPAC. Este é o caso das substâncias ilustradas na Figura 49:
 
Imagem: Anna Silva
 Figura 49. Acetonas comuns com nomes aceitos pela IUPAC.
CARACTERÍSTICAS DE ALDEÍDOS E CETONAS
A presença da carbonila na estrutura dessas classes de compostos é responsável por grande
parte de suas propriedades químicas e físicas. Ambas as classes apresentam polaridade em
suas estruturas devido à presença do átomo de oxigênio eletronegativo. Como não há
hidrogênio ligado ao átomo de oxigênio, essas substâncias não são capazes de fazer ligações
de hidrogênio entre si, porém podem fazê-lo com a água, e isso confere a aldeídos e cetonas
de baixa massa molar uma boa solubilidade neste solvente.
A falta de ligações de hidrogênio entre as moléculas implica também em pontos de ebulição
menores do que os vistos para os álcoois correspondentes. No entanto, aldeídos e cetonas têm
dipolos contínuos em sua estrutura e, por isso, suas forças intermoleculares são mais fortes
que as dos alcanos correspondentes. Se compararmos butano (MM=58), propanal (MM=58),
acetona (MM=58) e 1-propanol (MM=60), veremos que os pontos de ebulição são
respectivamente -0,5°C, 49°C, 56,1°C e 97,2°C.
 
Foto: Shutterstock.com
 Um frasco de reagente com ácido acético e o modelo mostrando a estrutura.
ÁCIDOS CARBOXÍLICOS
Os ácidos carboxílicos são extremamente importantes na química orgânica e no cotidiano de
maneira geral. O principal componente do vinagre é um ácido carboxílico, assim como a
substância responsável pelo odor rançoso da manteiga.
Os ácidos carboxílicos são substâncias do tipo RCO2H, como pode ser visto na Figura 50.
 
Imagem: Anna Silva
 Figura 50. Estrutura geral 
de ácidos carboxílicos.
NOMENCLATURA DOS ÁCIDOS CARBOXÍLICOS
A nomenclatura dos ácidos carboxílicos depende da complexidade do ácido. O nome dos
ácidos deve seguir as seguintes regras:
1. Encontre a maior cadeia que contém o grupo CO2H (essa será a cadeia principal).
2. O carbono da carbonila é sempre o carbono um, independentemente de ser um composto de
cadeia aberta ou fechada.
3. Os ácidos de cadeia aberta perderão a terminação –o do alcano correspondente e ganharão
a terminação –oico. A palavra “ácido” deve vir antes. Dessa forma, o ácido de três carbonos é
chamado de ácido propanoico, e o de cinco carbonos, ácido pentanoico, por exemplo.
4. Os ácidos de cadeia fechada devem ser nomeados adicionando a palavra “ácido” antes, e o
sufixo carboxílico.
Assim como em outras classes, alguns ácidos têm seus nomes comuns aceitos pela IUPAC. A
Figura 51 traz alguns exemplos de ácidos carboxílicos e suas respectivas nomenclaturas (os
nomes comuns aparecem entre parênteses).
 
Imagem: Anna Silva
 Figura 51. Exemplos de ácidos carboxílicos com suas respectivas estruturas.
CARACTERÍSTICASDOS ÁCIDOS
CARBOXÍLICOS
O carbono da carboxila tem hibridização sp2 e, portanto, o grupo carboxílico é planar, com
ângulo de ligação de 120°. Esses compostos são capazes de fazer ligações de hidrogênio
entre suas moléculas, assim como com a água, o que aumenta sua solubilidade e seu ponto de
ebulição. Na verdade, a maioria dos ácidos carboxílicos é capaz de fazer duas ligações de
hidrogênio com uma segunda molécula de ácido, formando um dímero (Figura 52), o que torna
seus pontos de ebulição ainda mais altos do que os dos álcoois correspondentes. O ponto de
ebulição do ácido acético (MM=60), por exemplo, é 117,9°C, enquanto o do 1-propanol
(MM=60) é 97,2°C.
 
Imagem: Anna Silva
 Figura 52. Ligações de hidrogênio formadas 
entre duas moléculas de ácido acético.
Outra característica importante é a acidez desses compostos, como evidenciado pelo nome da
classe. Os ácidos carboxílicos são todos considerados ácidos fracos, e vários fatores
influenciam em sua acidez, mas não os veremos aqui. Por ora, basta entendermos que todos
terão característica ácida, por menor que ela seja.
ÉSTERES
Os ésteres são uma classe derivada dos ácidos carboxílicos, na qual o hidrogênio ácido é
substituído por uma cadeia carbônica, tendo RCO2R’ como fórmula geral (Figura 53). Esses
compostos são muito comuns na natureza, sendo encontrados em óleos essenciais de frutas e
também na gordura animal.
 
Imagem: Anna Silva
 Figura 53. Estrutura 
geral de ésteres.
 
Imagem: Anna Silva
 Figura 54. Como nomear ésteres.
NOMENCLATURA DE ÉSTERES
A nomenclatura dessa classe é bastante simples e deve ser feita da seguinte forma:
Identifique o grupo alquila ligado ao oxigênio.
Identifique o ácido carboxílico de origem.
Elimine a palavra “ácido” e substitua a terminação –ico por –ato.
Após a palavra formada na etapa 3, adicione “de” e o nome do grupo alquila ligado ao
oxigênio (Figura 54).
A Figura 55 traz alguns exemplos de ésteres e seus nomes.
 
Imagem: Anna Silva
 Figura 55. Exemplos de ésteres e suas nomenclaturas.
CARACTERÍSTICAS DOS ÉSTERES
Os ésteres, diferentemente dos ácidos e dos álcoois, não são capazes de fazer ligações de
hidrogênio. Por isso, seu ponto de ebulição, por exemplo, é menor que os dos ácidos e álcoois
correspondentes, estando mais próximos dos aldeídos e cetonas, uma vez que têm o mesmo
tipo de força intermolecular.
Quanto à reatividade, os ésteres são estáveis o suficiente para existir na natureza e serem
usados como solvente. No entanto, esses compostos ainda podem sofrer diversos tipos de
reações para fornecer álcoois, amidas e aldeídos, por exemplo.
AMIDAS
 
Foto: Shutterstock.com
 Imagem Ilustrativa do Nitrogênio - elemento da tabela periódica de Mendeleev ampliada
com lupa.
Essa classe de compostos também deriva dos ácidos carboxílicos e são compostos nos quais
o –OH do ácido é substituído por –NH2, sendo sua fórmula geral RCONH2 (Figura 56). Você
sabe por que esses compostos são de extrema importância? A ligação peptídica, formada
quando dois aminoácidos reagem para gerar uma proteína, leva à formação de uma amida.
 
Imagem: Anna Silva
 Figura 56. Estrutura geral de amidas.
NOMENCLATURA DE AMIDAS
A nomenclatura dessa classe também pode ser comparada à nomenclatura que vimos para os
ácidos, da seguinte forma:
1. Identifique o ácido carboxílico correspondente.
2. Em compostos de cadeia aberta, elimine a palavra “ácido” e substitua a terminação –oico ou
–ico por –amida. Por exemplo: a amida derivada do ácido acético é a acetamida.
3. Em compostos de cadeia fechada, elimine a palavra “ácido” e substitua a terminação –
carboxílico por –carboxamida. Por exemplo: a amida derivada do ácido ciclopentanocarboxílico
é a ciclopentanocarboxamida.
4. Caso o átomo de nitrogênio seja substituído (-NHR ou -NR2), deve-se utilizar a letra N como
se fosse o número de localização do substituinte.
A Figura 57 traz alguns exemplos.
 
Imagem: Anna Silva
 Figura 57. Exemplos de amidas e suas respectivas nomenclaturas.
CARACTERÍSTICAS DAS AMIDAS
As amidas que apresentam ao menos um átomo de hidrogênio ligado ao átomo de nitrogênio
são capazes de fazer ligações de hidrogênio e, por isso, apresentam pontos de fusão e
ebulição elevados. Aquelas que apresentam dois substituintes no nitrogênio, por outro lado,
não são capazes de fazê-lo e apresentam pontos de fusão e ebulição muito mais baixos. Por
exemplo: a acetamida apresenta ponto de fusão de 82°C e ponto de ebulição de 221°C,
enquanto os da N,N-dimetilacetamida são respectivamente -20°C e 166°C.
 COMENTÁRIO
Esses compostos são os derivados de ácidos carboxílicos menos reativos entre todos. Isso
ocorre porque o átomo de nitrogênio em sua estrutura tem efeito doador de elétrons, tornando
o composto mais estável e, consequentemente, menos reativo. Ainda assim, podem reagir para
formar ácidos carboxílicos e aminas. Essa classe é ainda muito importante na indústria, pois as
poliamidas constituem os náilons, polímeros de extrema importância em diversos setores, e
são grupos funcionais presentes também em medicamentos, como o paracetamol.
NITRILAS
Essa classe tem muito em comum com os ácidos carboxílicos em termos de reações, embora
não apresente nenhum átomo de oxigênio em sua estrutura. As nitrilas apresentam um átomo
de carbono ligado a um átomo de nitrogênio através de uma tripla ligação (Figura 58).
 
Imagem: Anna Silva
 Figura 58. Estrutura geral de nitrilas.
NOMENCLATURA DE NITRILAS
A nomenclatura das nitrilas deriva dos alcanos correspondentes, mas caso sejam complexas,
saber o nome do ácido carboxílico correspondente pode ser útil. Vamos ver as regras:
1. A cadeia principal é maior cadeia que contém o grupo nitrila.
2. O carbono da nitrila deve ser numerado como carbono um.
3. Em compostos de cadeia aberta, deve-se adicionar o sufixo –nitrila ao nome do alcano
correspondente.
4. Em compostos mais complexos, identifique o ácido carboxílico correspondente, elimine a
palavra “ácido” e substitua a terminação –oico por –onitrila e a terminação –carboxílico por –
carbonitrila. Por exemplo: a amida derivada do ácido benzoico é a benzonitrila.
A Figura 59 traz alguns exemplos.
 
Imagem: Anna Silva
 Figura 59. Exemplos de nitrilas e suas nomenclaturas.
CARACTERÍSTICAS DAS NITRILAS
Essa classe de compostos apresenta um carbono ligado a um nitrogênio através de uma tripla
ligação. Isso quer dizer que esse carbono é sp e a geometria do grupo funcional é linear. Além
disso, o carbono está ligado a um átomo mais eletronegativo que ele, fazendo com que o
mesmo tenha uma carga parcial positiva. A diferença de eletronegatividade leva também um
caráter levemente ácido dos hidrogênios do carbono vizinho ao carbono da nitrila.
AMINAS
 
Imagem: Shutterstock.com
 Imagem Ilustrativa.
As aminas são, em essência, derivados orgânicos da amônia (NH3). São compostos de
extrema importância, uma vez que estão presentes, por exemplo, em neurotransmissores,
como a dopamina. Essa classe de compostos é definida pela presença de um grupo –NH2 em
sua estrutura, tendo como fórmula geral RNH2 (Figura 60).
 
Imagem: Anna Silva
 Figura 60. Estrutura geral de aminas.
Assim como os álcoois, as aminas são divididas entre primárias, secundárias e terciárias,
porém a classificação ocorre de maneira diferente do que vimos nos álcoois. Essa divisão é
feita de acordo com o número de carbonos ligados ao átomo de nitrogênio. Se apenas um
átomo de carbono estiver ligado ao nitrogênio da amina, ela é uma amina primária; se houver
dois átomos de carbono, secundária; três átomos de carbono, terciária. A Figura 61 traz
exemplos dos três tipos de aminas.
 
Imagem: Anna Silva
 Figura 61. Estruturas gerais de aminas primárias, secundárias e terciárias.
NOMENCLATURA DE AMINAS
A nomenclatura das aminas vai variar ligeiramente de acordo com sua estrutura. Vamos ver a
seguir as regras gerais:
Em aminas primárias:
Em aminas primárias, adiciona-se a terminação –amina aonome da cadeia alquílica
principal. Se a cadeia principal tem um carbono, a substância será denominada
metilamina; se tem dois carbonos, etilamina, e assim sucessivamente. Pode-se também
eliminar a terminação –o do alcano correspondente e adicionar a terminação –amina,
tendo-se então a etanamina quando a cadeia principal apresenta dois carbonos, por
exemplo;
Em aminas secundárias e terciárias:
Em aminas secundárias e terciárias, os substituintes ligados ao nitrogênio devem ser
nomeados utilizando os prefixos di e tri para compostos simétricos. Além disso, os
substituintes ganham a designação N- para identificar que estão ligados ao átomo de
nitrogênio. Temos a N,N-dimetilpropilamina, por exemplo;
Outros grupos funcionais:
Quando houver outros grupos funcionais, como –OH e –COOH, o grupo –NH2 é tratado
como substituinte e é denominado grupo amino. Temos o ácido 2-aminobutanoico, por
exemplo.
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
A Figura 62 traz alguns exemplos.
 
Imagem: Anna Silva
 Figura 62. Exemplos de aminas e suas nomenclaturas.
Existem ainda aminas heterocíclicas nas quais cada anel tem um nome próprio. Elas serão
apresentadas na Figura 63.
 
Imagem: Anna Silva
 Figura 63. Aminas cíclicas que têm nome próprio.
CARACTERÍSTICAS DAS AMINAS
As aminas primárias e secundárias são capazes de estabelecer ligações de hidrogênio entre si,
bem como com a água, o que garante uma boa solubilidade em água para moléculas
pequenas. O ponto de ebulição para essas substâncias é maior que o dos alcanos
correspondentes, porém costumam ser menores que os valores para álcoois. As aminas
terciárias não são capazes de fazer ligação de hidrogênio entre suas moléculas e, por isso,
apresentam ponto de ebulição mais baixo que as demais, porém são capazes de fazer esse
tipo de ligação com a água, o que garante boa solubilidade para moléculas pequenas.
As aminas têm caráter básico em maior ou menor proporção, porém são consideradas bases
razoavelmente fracas. Em sua maioria, serão mais básicas que a água, porém mais fracas que
hidróxidos, por exemplo.
O especialista Luiz Américo Mota apresenta as regras de nomenclatura dos compostos
oxigenados e nitrogenados, usando diferentes exemplos.:
VERIFICANDO O APRENDIZADO
1. A AMOXICILINA É UM ANTIBIÓTICO MUITO UTILIZADO NO
TRATAMENTO DE INFECÇÕES BACTERIANAS, E SUA ESTRUTURA PODE
SER VISTA ABAIXO:
ALGUMAS DAS FUNÇÕES ORGÂNICAS PRESENTES NA ESTRUTURA DA
AMOXICILINA SÃO:
A) Ácido carboxílico, cetona e amina.
B) Amida, fenol e amina.
C) Ácido carboxílico, cetona e fenol.
D) Cetona, amina e nitrila.
E) Éster, ácido carboxílico e fenol.
2. CONSIDERANDO AS CARACTERÍSTICAS DAS PRINCIPAIS FUNÇÕES
ORGÂNICAS OXIGENADAS E NITROGENADAS, PODEMOS AFIRMAR
QUE:
A) Álcoois têm ponto de ebulição menor que os aldeídos correspondentes, pois não fazem
ligação de hidrogênio.
B) Cetonas têm ponto de ebulição maior que o dos álcoois em função da polaridade da ligação
C=O.
C) Amidas e aminas sempre fazem ligações de hidrogênio e, por isso, têm altos pontos de
ebulição.
D) Ácidos carboxílicos têm ponto de ebulição maior que as cetonas, pois fazem ligações de
hidrogênio.
E) Nitrilas apresentam grupo carbonila em sua estrutura química e, por isso, são polares.
GABARITO
1. A amoxicilina é um antibiótico muito utilizado no tratamento de infecções bacterianas,
e sua estrutura pode ser vista abaixo:
Algumas das funções orgânicas presentes na estrutura da amoxicilina são:
A alternativa "B " está correta.
 
As funções orgânicas oxigenadas e nitrogenadas presentes na estrutura da amoxicilina são
fenol, amina, amida e ácido carboxílico.
2. Considerando as características das principais funções orgânicas oxigenadas e
nitrogenadas, podemos afirmar que:
A alternativa "D " está correta.
 
Ácidos carboxílicos apresentam um átomo de hidrogênio ligado a um oxigênio, característica
que permite que esses compostos façam ligação de hidrogênio. Na verdade, entre as
moléculas de ácido, eles são capazes de fazer duas ligações de hidrogênio, o que torna seu
ponto de ebulição ainda mais alto que os dos álcoois, por exemplo.
MÓDULO 4
 Identificar as principais funções sulfuradas e halogenadas da química orgânica e
suas características mais relevantes
A QUÍMICA DOS COMPOSTOS
SULFURADOS E HALOGENADOS
Agora que conhecemos as principais funções oxigenadas e nitrogenadas, vamos ver aquelas
que contêm enxofre e átomos de halogênio em sua estrutura e que também têm grande
importância na química orgânica e na bioquímica.
COMPOSTOS SULFURADOS
 
Foto: Shutterstock.com
 Imagem Ilustrativa.
O enxofre é um elemento do grupo 16 (ou 6A) da tabela periódica, vindo logo abaixo do
oxigênio. Isso quer dizer que esses dois elementos compartilham uma série de similaridades
em relação à sua química. Entretanto, propriedades como eletronegatividade e raio atômico,
por exemplo, proporcionam características químicas significativamente diferentes daquelas
observadas em relação ao átomo de oxigênio.
Vamos começar a estudar os compostos sulfurados e entender o que eles são, além de
conhecer algumas de suas características químicas e físicas.
TIÓIS
Os tióis, antigamente conhecidos como mercaptanos, estão mais presentes no cotidiano do
que imaginamos. Os tióis de baixo peso molecular são voláteis e têm odor bastante
característico, sendo responsáveis pelo odor desagradável liberado pelos gambás, por
exemplo. Além disso, estas substâncias são adicionadas ao gás de cozinha para que seja
possível identificar um vazamento, uma vez que os alcanos não apresentam cheiro.
Esses compostos são análogos aos álcoois que vimos ao longo do módulo anterior, e sua
fórmula geral é RSH (Figura 64). O grupo SH é chamado de grupo sulfidrila.
 
Imagem: Anna Silva
 Figura 64. Estrutura geral dos tióis.
NOMENCLATURA DE TIÓIS
Os tióis seguem o mesmo padrão de nomenclatura que os álcoois, porém a terminação para os
tióis é –tiol. Vamos ver as regras:
1. Encontre a cadeia principal de forma que ela seja a maior cadeia carbônica que contém o
grupo sulfidrila.
2. Numere os carbonos começando pela extremidade mais próxima ao grupo funcional.
3. Escreva o nome dando aos substituintes a numeração do carbono ao qual estão conectados
e obedecendo a ordem alfabética.
4. Caso o grupo –SH seja um substituinte, deve-se utilizar o prefixo sulfanil.
A Figura 65 traz alguns exemplos de estruturas e seus respectivos nomes.
 
Imagem: Anna Silva
 Figura 65. Exemplos de tióis e suas nomenclaturas.
CARACTERÍSTICAS DOS TIÓIS
Quanto às suas propriedades físicas, os tióis apresentam ponto de ebulição mais baixo que os
álcoois correspondentes, pois suas ligações de hidrogênio, embora existam, são muito mais
fracas que as encontradas em compostos oxigenados. Para fins de comparação, temos que o
metanotiol tem ponto de ebulição de 6°C, sendo um gás a temperatura ambiente, enquanto o
metanol, líquido a temperatura ambiente, tem ponto de ebulição igual a 65°C.
 ATENÇÃO
Outra característica que precisamos pontuar é a acidez. Quando falamos de álcoois,
discutimos sua leve acidez. Os tióis são ainda mais ácidos que os álcoois, graças ao maior raio
atômico do enxofre e sua maior polarizabilidade. Por outro lado, as bases formadas a partir dos
tióis, denominadas tiolatos, são mais fracas que os alcóxidos gerados na reação de álcoois
com bases.
A terceira característica importante, especialmente para o organismo humano, é o fato de que
a ligação S-H é fraca o suficiente para que os tióis sejam capazes de reagir com agentes
oxidantes moderados e formar ligações dissulfeto, R-S-S-R. Essa característica é
particularmente relevante, pois afeta a estrutura primária de proteínas e permite a ligação
covalente entre cadeias polipeptídicas de maneira que sejam estabilizadas, como é o caso da
insulina, por exemplo (Figura 66).
 
Imagem: Shutterstock.com
 Figura 66. Pontes de dissulfeto formadas entre as cadeias da insulina.
SULFETOSOs sulfetos, também conhecidos como tioéteres, são os análogos sulfurados dos éteres, tendo
como fórmula geral R-S-R’ (Figura 67).
 
Imagem: Anna Silva
 Figura 67. Estrutura geral dos sulfetos.
NOMENCLATURA DOS SULFETOS
A nomenclatura dessa classe é bastante similar à dos éteres, como podemos ver nas regras a
seguir:
Trate a cadeia alquílica como um substituinte, ou seja, nome da cadeia alquílica sem a
terminação “a” (metil, etil...) + sulfanil + nome do alcano principal. Assim, teremos
metilsulfanilmetano, por exemplo.
Uma segunda opção também aceita pela IUPAC é seguindo o seguinte passo a passo:
Identifique as cadeias alquílicas ligadas ao átomo de enxofre.
Dê os nomes das cadeias alquílicas seguido da terminação –sulfeto. Duas metilas então
formam o dimetilsulfeto, por exemplo.
A Figura 68 traz alguns exemplos.
 
Imagem: Anna Silva
 Figura 68. Exemplos de sulfetos e suas nomenclaturas.
CARACTERÍSTICAS DOS SULFETOS
Como dissemos anteriormente, embora oxigênio e enxofre compartilhem semelhanças, por
estarem no mesmo grupo da tabela periódica, também apresentam diferenças. Uma dessas
diferenças que afeta os sulfetos é a maior polarizabilidade do enxofre, o que quer dizer que o
átomo de enxofre é capaz de estabilizar cargas negativas em um átomo vizinho. Isso faz com
que, nos sulfetos, os átomos de hidrogênio ligados ao carbono vizinho ao átomo de enxofre
sejam mais ácidos do que aqueles ligados ao grupo alcóxi.
Um segundo ponto importante é que os sulfetos são passíveis de sofrer oxidação e, como
membro do terceiro período da tabela periódica, o enxofre pode expandir sua camada de
valência para além dos oito elétrons normalmente aceitos, fazendo ligações duplas adicionais
com o oxigênio. Dessa forma, um sulfeto pode ser oxidado a sulfóxido e posteriormente a
sulfona (Figura 69).
 
Imagem: Anna Silva
 Figura 69. Reações de oxidação a partir do sulfeto.
Os sulfetos podem ainda reagir com agentes alquilantes de maneira a formar sais de
trialquilsulfônio. Um exemplo muito importante da aplicação da formação desse sal ocorre no
organismo humano, no qual a S-adenosilmetionina funciona como um agente metilante na
conversão da norepinefrina à epinefrina, mais conhecida como adrenalina (Figura 70).
 
Imagem: Anna Silva
 Figura 70. Reação de conversão da norepinefrina a epinefrina.
Existem ainda outros compostos sulfurados parecidos com os que vimos quando estudamos os
compostos oxigenados. Alguns exemplos estão mostrados na Figura 71.
 
Imagem: Anna Silva
 Figura 71. Outras classes de compostos sulfurados.
COMPOSTOS HALOGENADOS
Diferentemente dos compostos sulfurados, os compostos halogenados são mais comuns no
cotidiano dos laboratórios de química orgânica. Isso porque essas substâncias sofrem reações
importantes, além de serem utilizadas como solventes.
HALETOS DE ALQUILA
Na natureza, os haletos de alquila podem ser encontrados em algas, em queimadas e em
vulcões. Apesar da relevância desses compostos na indústria química, sua utilização deve ser
feita com muita cautela, pois muitos dos compostos clorados, por exemplo, apresentam efeito
carcinogênico cumulativo importante. Esses compostos têm fórmula geral RX, em que X pode
ser flúor, cloro, bromo ou iodo (Figura 72).
 
Imagem: Anna Silva
 Figura 72. Estrutura geral dos haletos de alquila.
Assim como os álcoois que vimos anteriormente, os haletos de alquila são divididos entre
primário, secundário e terciário. Nos haletos primários, o átomo de halogênio está ligado a um
átomo de carbono que só faz uma ligação do tipo carbono-carbono; em haletos secundários e
terciários, o halogênio está ligado a um átomo de carbono que faz duas ou três ligações
carbono-carbono respectivamente (Figura 73).
 
Imagem: Anna Silva
 
Imagem: Anna Silva
 
Imagem: Anna Silva
 Figura 73. Classificação dos haletos de alquila em primários, secundários e terciários.
Antes de falarmos das características desses compostos, vamos aprender a nomeá-los, da
mesma forma como fizemos com os outros compostos:
1
2
3
4
Identifique a cadeia principal, que deve ser a cadeia carbônica mais longa possível dentro do
composto.
Numere os carbonos de maneira que o carbono um seja o mais próximo possível de um
substituinte, seja ele um halogênio ou não. Lembre-se de usar os prefixos di-, tri, tetra-, por
exemplo, quando houver mais de uma substituinte do mesmo tipo.
Se a cadeia puder ser nomeada por ambas as extremidades, deve-se seguir a ordem
alfabética.
4. Se houver mais de um halogênio na cadeia, eles devem entrar no nome principal seguindo a
ordem alfabética.
A Figura 74 traz alguns exemplos de haletos de alquila e seus respectivos nomes.
 
Imagem: Anna Silva
 Figura 74. Exemplos de haletos de alquila e suas nomenclaturas.
CARACTERÍSTICAS DO HALETOS DE ALQUILA
Os halogênios são mais eletronegativos que o carbono, ainda que em maior ou menor grau, o
que quer dizer que a ligação C-X é uma ligação polarizada, o que afeta imensamente a química
desses compostos e faz com que tenham dipolos constantes na molécula, conforme veremos
adiante.
 SAIBA MAIS
As forças intermoleculares entre as moléculas de haletos de alquila são forças do tipo dipolo-
dipolo e são afetadas ainda pelo halogênio presente na estrutura das moléculas. Esse tipo de
força intermolecular é favorecido quanto maior for a distorção da nuvem eletrônica do átomo,
ou seja, quanto mais polarizável ele é.
No caso dos halogênios, o elemento mais polarizável é o iodo, que apresenta o maior raio
atômico e a menor eletronegatividade, e o menos polarizável é o flúor, que apresenta menor
raio atômico e maior eletronegatividade.
A implicação dessa diferença na polarização dos halogênios é que o ponto de ebulição dos
diferentes compostos halogenados varia muito.
PONTO DE EBULIÇÃO
O fluorometano tem ponto de ebulição igual a -78°C, enquanto o iodometano tem ponto
de ebulição igual a 42°C.
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
Outra característica importante que provém do aumento do raio atômico é a força da ligação
entre os halogênios e o átomo de carbono.
FORÇA DE LIGAÇÃO
O flúor é o átomo mais eletronegativo, e o comprimento da ligação com o carbono é o
menor dentre os halogênios. Por outro lado, o iodo é o menos eletronegativo e é o que
tem o maior raio atômico, ou seja, é aquele no qual a ligação carbono-halogênio é mais
longa e fraca.
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
Esses compostos são ainda muito importantes, pois reagem para formar reagentes de
Grignard e outros compostos organometálicos que são altamente reativos e têm extrema
relevância na síntese de compostos orgânicos em laboratório.
REAGENTES DE GRIGNARD
São compostos organometálicos que apresentam em sua estrutura uma átomo de
magnésio ligado a um radical orgânico e um halogênio.
javascript:void(0)
HALETOS DE ÁCIDOS
Os haletos de ácidos são uma classe de compostos que deriva dos ácidos carboxílicos, que
vimos anteriormente. Nessa classe, o grupo –OH do ácido é substituído por um halogênio,
dando origem a um composto de fórmula geral RCOX (Figura 75). Embora existam fluoretos,
brometos e iodetos de alquila, os haletos de ácidos mais comuns são os cloretos de alquila.
 
Imagem: Anna Silva
 Figura 75. Estrutura geral dos haletos de ácidos.
NOMENCLATURA DE HALETOS DE ÁCIDOS
Para nomear os haletos de ácidos, vamos usar como base a nomenclatura que aprendemos
para os ácidos carboxílicos. Como?
1
2
3
Identifique o ácido carboxílico de origem.
Elimine a palavra “ácido” e substitua a terminação –oico do seu nome pela terminação –ila.
Caso seja um composto cíclico, a terminação –carboxílico será substituída pela terminação –
carbonila.
A palavra originada na etapa 2 deverá ser precedida de “cloreto”, “brometo”, “iodeto” ou
“fluoreto”, dependendo do halogênio em questão, e do termo “de”.
A Figura 76 traz alguns exemplos deste tipo de composto.

Outros materiais