Ed
há 11 meses
Para calcular a resistência equivalente \( R_{eq} \) de resistores em paralelo, usamos a fórmula: \[ \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} \] Neste caso, temos \( R_1 = 100 \, \Omega \) e \( R_2 = 200 \, \Omega \). Substituindo os valores: \[ \frac{1}{R_{eq}} = \frac{1}{100} + \frac{1}{200} \] Calculando: \[ \frac{1}{R_{eq}} = \frac{2}{200} + \frac{1}{200} = \frac{3}{200} \] Agora, invertendo para encontrar \( R_{eq} \): \[ R_{eq} = \frac{200}{3} \approx 66,67 \, \Omega \] Portanto, a resistência equivalente do circuito é: A) 66,67 Ω.
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade
Mais perguntas desse material