Ed 
há 11 meses
Para encontrar o valor de sen(θ) sabendo que cos(θ) = 0,8 e que θ está no primeiro quadrante, podemos usar a identidade fundamental da trigonometria: \[ sen^2(θ) + cos^2(θ) = 1 \] Substituindo o valor de cos(θ): \[ sen^2(θ) + (0,8)^2 = 1 \] \[ sen^2(θ) + 0,64 = 1 \] \[ sen^2(θ) = 1 - 0,64 \] \[ sen^2(θ) = 0,36 \] Agora, tiramos a raiz quadrada: \[ sen(θ) = \sqrt{0,36} = 0,6 \] Como θ está no primeiro quadrante, sen(θ) é positivo. Portanto, a resposta correta é: a) 0,6
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade
Mais perguntas desse material