Buscar

Apostila Processos Refrativos

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 114 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 114 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 114 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

1ª edição
Reitor: Prof. Maurício Chermann
EQUIPE DE PRODUÇÃO CORPORATIVA
Gerência: Adriane Aparecida Carvalho
Coordenação de Produção: Diego de Castro Alvim
Coordenação Pedagógica: Karen de Campos Shinoda
Equipe Pedagógica: Graziela Franco, Rúbia Nogueira
Coordenação Material Didático: Michelle Carrete
Revisão de Textos: Adrielly Rodrigues, Aline Gonçalves
Diagramação: Amanda Holanda, Douglas Lira, Nilton Alves
Ilustração: Everton Arcanjo
Impressão: Grupo VLS / Gráfica Cintra
Imagens: Fotolia / Freepik / Acervo próprio
Os autores dos textos presentes neste material didático assumem total 
responsabilidade sobre os conteúdos e originalidade.
Proibida a reprodução total e/ou parcial.
© Copyright Brazcubas 2020
1ª edição
2020
Av. Francisco Rodrigues Filho, 1233 - Mogilar 
CEP 08773-380 - Mogi das Cruzes - SP
Sumário
Sumário 
Apresentação 5
O Professor 7
Introdução 9
1unidade I
1Refração objetiva - Ceratometria 11
1.1 Uma breve história sobre o ceratômetro 11
1.2 Ceratometria 13
1.2.1 O funcionamento do ceratômetro 13
1.3 Os ceratômetros 18
1.3.1 Ceratômetro Javal-Schiotz 18
1.3.1.1 Caraterísticas 19
1.3.1.2 Procedimento de medida 22
1.3.1.2.1 Ajuste da ocular 22
1.3.1.2.2 Alinhamento e foco do ceratômetro 23
1.3.1.2.3 Localização dos meridianos principais e medida do 
astigmatismo 24
1.3.1.2.4 Estimação do astigmatismo corneano com o 
ceratômetro Javal 26
1.3.2 Ceratômetro Helmholtz 28
1.3.2.1 Características 29
1.3.2.2 Procedimento de medida 32
1.4 Regra de Javal 34
Referências da unidade I 36
2unidade II
2Refração objetiva - Retinoscopia 37
2.1 A retinoscopia 37
2.1.1 O retinoscópio 38
2.1.2 Sistema de iluminação ou de projeção 38
2.1.3 Sistema de observação 41
2.2 Conceitos básicos de retinoscopia 41
2.2.1 Reflexo retiniano 41
2.2.2 Tipos de sombras 42
Sumário
2.2.3 Espelhos 43
2.2.3.1 Espelho plano 43
2.2.3.2 Espelho côncavo 44
2.2.3.3 Neutralização 44
2.2.4 Distância de trabalho 45
2.2.5 Lente de trabalho 47
2.3 Características do reflexo 47
2.3.1 Velocidade 47
2.3.2 Brilho 48
2.3.3 Largura 48
2.4 Fazendo retinoscopia 48
2.4.1 Determinando a refração 50
2.4.1.1 Ametropias esféricas 50
2.4.1.2 Ametropias cilíndricas 51
2.4.1.2.1 Localização do eixo cilíndrico 51
2.4.1.2.2 Neutralização da potência cilíndrica 54
2.5 Retinoscopia dinâmica 60
2.5.1 Retinoscopia Mohindra 61
Referências da unidade II 62
3unidade III
3Refração subjetiva 63
3.1 Entendendo a refração subjetiva 63
3.1.1 O furo estenopeico e a diminuição da qualidade visual 65
3.2 Materiais para a refração subjetiva 66
3.2.1 Caixa de provas 67
3.2.2 Foróptero 70
3.2.2.1 Comandos de ajuste 71
3.2.2.2 Controle das lentes do foróptero 72
3.3 Refração subjetiva 74
3.3.1 Monocular para longe 74
3.4 Técnicas para o processo refrativo 77
3.4.1 Teste bicromático 78
3.4.2 Método Donders 82
3.4.3 Miopização 83
Referências da unidade III 86
Sumário
4unidade IV
4Afinamento da refração 87
4.1 Refração do astigmatismo 87
4.1.1 Círculo horário 88
4.1.2 Cilindro Cruzado de Jackson (CCJ) 91
4.1.3 Fenda estenopeica 96
4.2 Subjetivo binocular 98
4.2.1 Balanço binocular 99
4.3 Refração subjetiva para perto 103
4.3.1 Teste da grade ou o CCJ para perto 104
4.3.2 Método de pontuação 107
4.4 Critérios para prescrição 108
4.4.1 Prescrição para miopia 109
4.4.2 Prescrição para hipermetropia 109
4.4.3 Prescrição para astigmatismo 110
4.4.4 Prescrição em présbitas 110
4.4.5 Prescrição em forias 110
Referências da unidade IV 111
Apresentação
7
Apresentação
Seja muito bem-vindo, aluno, à disciplina de Processos Refrativos. Eu me 
chamo Paulo e serei o guia que irá ajudá-lo a compreender um pouco mais sobre 
como realizar a refração e corrigir os erros refrativos de seus pacientes.
Nesta disciplina, você aprenderá como realizar o processo refrativo de modo 
objetivo e também a guiar o paciente no modo subjetivo. Neste livro didático você 
aprenderá o conceito de instrumentos, assim como verá guias para a realização dos 
testes que estudará nas aulas presenciais. Dessa forma, meu querido aluno, você 
dará o primeiro passo para atender todos os tipos de pacientes.
E não podemos nos esquecer do AVA. O Ambiente Virtual de Aprendizagem 
é de fundamental importância para a compreensão da disciplina. As videoaulas 
fornecem um conteúdo complementar para o livro didático e uma outra visão para 
a prática além da aula presencial. Os materiais extras são muito importantes, assim 
como os demais materiais da midiateca. 
Espero que você se divirta nesta disciplina!
Objetivos da disciplina:
• Praticar os processos refrativos;
• Corrigir os erros refrativos;
• Melhorar a qualidade visual do paciente.
Competências e habilidades da disciplina:
• Análise e compreensão dos processos refrativos;
• Conhecimento sobre os princípios ópticos;
• Domínio da óptica fisiológica. 
O Professor
9
O Professor
Prof. Paulo Henrique Oliveira de Lima
Olá!
Meu nome é Paulo Henrique Oliveira de Lima, mais 
conhecido como Paulo Hol. 
Assim como você, fui aluno da Brazcubas no curso 
de Tecnologia em Óptica e Optometria. Eu me formei 
em 2015, junto com a pós-graduação em Optometria 
Avançada. Em 2018, conclui minha segunda pós-gra-
duação na área, tornando-me especialista em 
Ortóptica e Ciências Visuais. Antes de conhecer a 
Optometria, fiz o curso Técnico em Óptica pelo Senac, 
terminando em 2005. 
Em paralelo à minha carreira de optometrista, 
desempenho outra como pesquisador na USP, onde 
me formei Bacharel em Letras, em 2012, Mestre em 
Letras Clássicas em 2016 e, atualmente, sou douto-
rando nessa área. 
Na própria Brazcubas tive a oportunidade de orga-
nizar dois eventos dedicados à Optometria. 
Espero que minha breve história sirva de incentivo 
a você que, buscando conhecimento e um caminho, 
entra nessa nova jornada para alcançar um novo 
patamar profissional. 
Um grande abraço! 
Introdução
11
Introdução
Seja muito bem-vindo aos “Processos refrativos”. Nesta nova disciplina, vamos 
estudar e compreender como fazer a avaliação visual conhecida como “exame de 
vista”, com as técnicas específicas para a análise e neutralização dos erros refra-
tivos. No livro didático, você conhecerá a teoria para as técnicas refrativas e o passo 
a passo para a realização delas, que você colocará em prática nas aulas presenciais.
Uma vez que você viu nas disciplinas de “Óptica fisiológica” o que são os 
erros refrativos e o papel da acomodação no olho, em “Óptica oftálmica” o papel 
das lentes corretivas e como elas funcionam, e em “Testes preliminares” os testes 
pré-refrativos, agora você aprender as técnicas refrativas e como utilizar os instru-
mentos necessários para a sua realização.
O livro didático está dividido em quatro unidades:
A primeira unidade, denominada “Refração objetiva – Ceratometria”, tem como 
objetivo apresentar os ceratômetros, instrumentos ópticos de análise da superfície 
da córnea e seu papel nos processos refrativos, assim como utilizá-los.
Na segunda unidade, denominada “Refração objetiva – Retinoscopia”, tem 
como objetivo a apresentação do retinoscópio, o principal aparelho para a análise 
e diagnóstico de erros refrativos do olho, assim como técnicas para se conseguir 
neutralizar os reflexos e sombras.
Já a terceira unidade, denominada “Refração subjetiva”, tem como objetivo 
apresentar o que é a refração subjetiva, os instrumentos necessários para a reali-
zação dela e as técnicas para a neutralização da refração monocular do paciente. 
Por fim, chegamos à quarta unidade, denominada “Afinamento da refração”, 
que tem como objetivo apresentar técnicas para a neutralização do astigmatismo, a 
refração binocular, a refração para perto e as recomendações para a prescrição dos 
óculos.
Para nos auxiliar com o domínio da disciplina, além do presente livro e das 
aulas presenciais, temos também o Ambiente Virtual de Aprendizagem (AVA), 
em que serão disponibilizados exercícios, vídeos, novidades e artigos, de modo acomplementar nossos estudos.
Bom, pronto para iniciar? 
Vamos em frente! 
1
Refração objetiva - Ceratometria unidade I
13
1unidade I
1Refração objetiva - Ceratometria
1.1 Uma breve história sobre o ceratômetro 
A córnea é considerada a lente de maio
r poder refrativo do aparelho 
óptico humano. Dessa forma, ela foi moti
vo de estudos por diferentes pensa-
dores, que utilizaram diversas técnicas ao
 longo da história.
Um dos primeiros e mais célebres instrumentos construídos para estudar 
a córnea, por meio de sua curvatura anterior e potência, foi o ceratômetro, ou 
oftalmômetro. A ceratometria, do grego κέρατος, que significa córnea, e μέτρον, 
que significa medida, é a medida dos raios de curvatura e potência refrativa dos 
meridianos principais da córnea. A importância dessas medidas é evidente para o 
processo refrativo do olho.
1Comando 
Tabela
Refração objetiva - Ceratometriaunidade I
14
As primeiras medidas da forma da córnea foram propostas pelo astrônomo 
jesuíta Christoph Scheiner, em Oculus hoc est: Fundamentum opticum1, em 1619. O 
que é importante para nós nessa obra é a forma com que Scheiner aponta um prin-
cípio para medir a córnea, que é utilizado até hoje nos instrumentos: consiste em 
medir o tamanho da imagem de um objeto luminoso refletido pela córnea. 
O primeiro ceratômetro foi desenvolvido por Jesse Ramsden, em 1796, utili-
zando os elementos presentes nos instrumentos atuais, mas seu aparelho passou 
despercebido. Hermann von Helmholtz, em 1855, criou um dispositivo laboratorial 
próximo ao de Ramsden, mas seu uso não era clínico. Posteriormente aprimorado 
por Louis Javal e Hjalmar Schiotz, em 1881, o aparelho foi desenhado para um uso 
geral. Ainda no século XIX, o oftalmologista português denominado Antônio Plácido, 
desenvolveu o “Disco de Plácido”, que permitia analisar a distorção da superfície 
corneana. Nó século XX, mais precisamente em 1932, Bausch & Lomb apresentaram 
modificações importantes que aumentaram a precisão das medidas para torná-las 
mais simples. 
Ainda no século XX, com o advento do estudo das anomalias corneanas, foram 
incorporados ao disco de Plácido sistemas de registro em fotografia, cujo avanço 
tecnológico permitiu um registro e segmento de casos de patologias corneais. Nos 
anos 80 do século passado, com o advento da tecnologia informática, a análise de 
córnea ficou ainda mais precisa com a topografia de córnea computadorizada.
Importante!
Por meio da topografia corneana somos capazes de estudar a córnea em 
diversos níveis: podemos analisá-la de forma central com o ceratômetro, e 
de forma global com os topógrafos computadorizados. 
1 Em uma tradução literal para português: “O olho como ele é: um fundamento óptico”.
Refração objetiva - Ceratometria unidade I
15
1.2 Ceratometria 
O ceratômetro foi o primeiro instrumen
to construído para o estudo 
da superfície corneana com aplicações c
línicas. Hoje em dia, ele é utilizado 
para medir os raios de curvatura coneais
, de modo que encontremos tanto a 
potência astigmática da córnea, como seu
 eixo. Ele é um aparelho imprescin-
dível para o estudo e adaptação das lente
s de contato. 
Importante!
Para entender melhor como funciona o ceratômetro, há um conteúdo no 
AVA chamado de “Fórmula ceratométrica” que vai ajudá-lo a entender a 
ceratometria.
1.2.1 O funcionamento do ceratômetro
O funcionamento do ceratômetro é muito simples. Ele foi projetado para medir 
o tamanho da imagem formada por reflexão de um objeto de tamanho conhecido. 
Nesse caso, a córnea atua como um espelho convexo. Dessa forma, uma vez que 
sabemos o tamanho do objeto conhecido, as miras e a distância do foco, é relativa-
mente simples medir a curvatura da córnea por meio do cálculo do raio da superfície 
óptica. 
Para calcularmos o raio de curvatura, podemos utilizar os cálculos de óptica 
geométrica empregados para determinar o tamanho de uma imagem em um 
espelho convexo. Uma vez conhecido o raio, e assumindo um valor para o índice de 
refração da córnea, é mais simples para calcularmos a potência corneana por meio 
de cálculos de óptica paraxial. A fórmula para isso é:
Refração objetiva - Ceratometriaunidade I
16
Na equação, D é a curvatura da córnea em dioptria, η1 é o índice de refração 
do ar (1), η2 é o índice de refração médio da córnea (1,3375) e r é o raio de curvatura 
da córnea em metros.
Logo, se a curvatura média da córnea é de 8 milímetros, quanto seria seu poder 
refrativo (curvatura anterior) em dioptrias?
Os ceratômetros funcionam a base de u
ma teoria simples de óptica 
geométrica. Todavia, a prática de seu uso
 não costuma ser muito fácil, afinal 
o paciente é uma pessoa. Para evitar os 
micro movimentos do globo ocular, 
os ceratômetros dispõem de um sistem
a duplicador de imagem, de modo 
que ela seja estabilizada, facilitando a me
dida clínica. 
Figura 1.1 – Sistema de duplicação do ceratômetro
Objeto
Prisma
Objetiva
a)
b)
Imagem 
duplicada
Adaptada de: FURLAN et al. (2009).
Refração objetiva - Ceratometria unidade I
17
Como a figura 1.1 demonstra, o sistema de duplicação da imagem é 
formado por uma lente objetiva e um prisma que forma duas imagens do 
objeto, que no nosso caso é uma imagem virtual no interior da córnea, de 
extensão h’. A parte da lente não coberta pelo prisma produz uma imagem 
sem desvios, ainda que a parte da lente que está coberta pelo prisma produza 
uma imagem desviada em direção à sua base. Como o prisma produz um 
desvio angular constante da imagem, a mudança lateral dela será propor-
cional à distância entre o prisma e a imagem, de modo que um deslizamento 
longitudinal (axial) do prisma irá produzir uma mudança transversal da 
imagem formada através dela.
Ajustando a separação entre a lente e o prisma, pode-se chegar a uma situação 
em que os extremos opostos da imagem direta e deslocada se coincidem. É impor-
tante que você note que nessa posição o deslocamento produzido pelo prisma 
coincide com o tamanho do objeto. Dessa forma, conhecido o desvio angular que o 
prisma introduz e a distância entre o prisma e as imagens duplicadas, pode-se obter 
o desvio, ou seja, o tamanho do objeto.
Esse modo indireto de medida tem como vantagem fundamental que não é 
afetado por pequenos movimentos do objeto, pois ante a tais movimentos as duas 
imagens finais se deslocam sozinhas entre si. Podemos destacar que o ceratômetro 
está apropriadamente calibrado para que a leitura do raio de curvatura da córnea 
seja realizada diretamente em uma escala graduada. A calibração leva em conta a 
duplicação, o tamanho das miras, o aumento do microscópio e todos os elementos 
controláveis que influenciam na medida.
Importante!
Resumindo, os elementos de um ceratômetro serão: 
As miras: que são elementos que definem os extremos do objeto que é 
empregado na medida;
O microscópio: partindo das imagens virtuais das miras, formam uma 
imagem real que permite sua medida;
Sistema de duplicação: duplica a imagem real para facilitar sua medida 
na presença de pequenos movimentos oculares e melhora a medida dos 
astigmatismos.
Refração objetiva - Ceratometriaunidade I
18
Existem dois tipos principais de instrumentos: o tipo Helmholtz, em que a 
medida do raio pode ser realizada deixando fixas as miras e sendo movido o sistema 
duplicador da imagem, também conhecido como ceratômetro de uma posição; e o 
tipo Javal-Schiotz, que permite mover as miras, deixando o sistema duplicador fixo, 
também conhecido como ceratômetro de duas posições. 
Figura 1.2 – Oftalmômetro desenvolvido por Helmholtz (1851), primeiro modelo de instrumento 
capaz de medir a superfície da córnea.
Disponível em: <https://bit.ly/2vUb6jG>. Acesso em: 01/12/2019. 
Figura 1.3 – Ceratômetro do tipo Helmholtz adaptado por Bausch & Lomb e vendido comercialmente
Fonte: FURLAN et al. (2009).
Refração objetiva - Ceratometria unidade I
19
Figura 1.4 – - Ceratômetro desenvolvido por Javal (1888)Disponível em: <https://bit.ly/2uwb7dp>. Acesso em: 01/12/2019. 
Figura 1.5 – Ceratômetro Javal vendido comercialmente
Fonte: FURLAN et al. (2009).
Apesar de ser um dos principais equipamentos para a mensuração da topo-
grafia corneana, o ceratômetro tem algumas limitações:
 9 A medida da córnea é feita apenas em sua zona apical (central), em cerca 
de 3-4 milímetros de diâmetro;
 9 Os cálculos são baseados em valores padrões, com índices de refração pa-
drão, pois a reflexão é produzida em uma superfície esférica, assumindo a 
córnea ser simétrica com relação ao eixe óptico e que sua óptica é paraxial;
Refração objetiva - Ceratometriaunidade I
20
 9 A zona corneana a ser explorada pode variar de acordo com o raio de 
curvatura. Por exemplo, com o equipamento igual, podemos medir em 2,8 
mm quando o raio corneano é de 7 mm, e em 3,5 mm se o raio é de 9,1 
mm. Tais variações podem alterar a medida de +/- 0,25D até +/- 0,93D para 
calcular sua potência.
Vamos ao AVA!
Você pode entender um pouco mais a relação entre astigmatismo e 
córnea com um conteúdo presente no AVA chamado “Reflexo corneano e 
astigmatismo”.
1.3 Os ceratômetros
Nesta subunidade, você vai ter acesso aos equipamentos necessários para a 
realização da topografia corneana, os ceratômetros. Assim, você aprenderá as carac-
terísticas, o funcionamento, as partes e como realizar as medidas. 
1.3.1 Ceratômetro Javal-Schiotz
O primeiro equipamento que vamos estudar é o ceratômetro Javal-
Schiotz. Ele é um instrumento de duas medidas que possibilita não somente 
uma medida central, mas periférica, facilitando a análise de um astigma-
tismo irregular. 
Refração objetiva - Ceratometria unidade I
21
Figura 1.6 – Ceratômetro do tipo Javal
Fonte: FURLAN et al. (2009).
1.3.1.1 Caraterísticas
Este modelo de ceratômetro apresenta um design considerado vanguarda, 
todavia, ainda é vigente no mercado. Sua simplicidade e fácil compreensão o tornam 
apropriado para introduzir as características principais dos ceratômetros.
O princípio de funcionamento desse equipamento encontra-se na figura 1.7.
Figura 1.7 – Funcionamento do ceratômetro Javal
Adaptada de: FURLAN et al. (2009).
Refração objetiva - Ceratometriaunidade I
22
As miras se movem simultaneamente, mantendo-se simétricas 
ao eixo óptico, sobre um arco graduado, simulando os extremos de um 
objeto de tamanho variável. O arco tem no centro o olho examinado. As 
miras formam uma imagem virtual por reflexão na córnea do paciente. As 
imagens são, por sua vez, o objeto do qual a objetiva do microscópio forma 
uma imagem real no plano focal da ocular, que tem como função permitir 
observar a imagem final das miras com aumento suficiente e sem esforço 
acomodativo por parte do observador.
No plano focal da ocular podemos encontrar o retículo focal, que é um fino 
filamento ou uma cruz que sobrepõe a imagem das miras. Atrás da objetiva está o 
dispositivo de duplicação. No caso desse instrumento é um prisma de Wollaston, que 
separa simetricamente o eixo das duas imagens resultantes. 
O conjunto formado pelo prisma de Wollaston e o arco que suporta as miras 
giram ao redor do eixo óptico para poder alinhar-se com os meridianos principais. 
Cada um dos dois meridianos principais será medido separadamente, pois esse é um 
ceratômetro de duas posições.
Uma das características mais distintivas do ceratômetro Javal é a forma das 
miras, como podemos observar na figura 1.8. Uma das miras tem uma forma retan-
gular, enquanto a outra é escalonada.
Figura 1.8 – Miras do ceratômetro Javal
Adaptada de: FURLAN et al. (2009).
Refração objetiva - Ceratometria unidade I
23
Ambas as miras são retroiluminadas e podem apresentar-se coloridas, uma 
verde e outra vermelha. Elas são separadas no centro, formando uma linha escura 
horizontal que faz o papel de guia. A longitude de referência é a separação entre as 
bordas interiores da mira, ou seja, o objeto que vamos empregar para a aplicação 
da fórmula ceratométrica, que, passando pela linha de fé, está entre as duas miras.
Quando as miras são observadas através do ceratômetro há a reflexão na 
córnea. Com isso, buscamos conseguir fazer as bordas das imagens duplicadas se 
coincidirem, conforme a figura 1.9 demonstra.
Figura 1.9 – Aspectos das miras do ceratômetro Javal
Adaptada de: Furlan et al. (2009).
A duplicação proporcionada pelo prisma de Wollaston é fixa, devido 
ao ajuste de coincidência das miras se realizarem por meio da separação 
entre as miras. Elas estão montadas sobre uma faixa semicircular e um 
sistema mecânico, operado pelo observador, o que permite um desloca-
mento sincrônico, separando ou juntando, mas sempre mantendo ambas 
as miras simétricas no olho. 
A separação necessária das miras no momento de realizar uma medida ocorre 
como a figura acima demonstra. Dessa forma, com a linha guia contínua e as miras 
se tocando, mas não se sobrepondo, podemos encontrar o poder de curvatura do 
meridiano analisado. Se as miras forem verde e vermelho, em caso de sobreposição, 
Refração objetiva - Ceratometriaunidade I
24
tal zona apresentará uma cor branco-amarelada, o que facilita muito a localização da 
posição de medida. 
As miras centrais devem ser as únicas observadas para a realização da medida. 
Podemos notar que sob condições de mensuração, as medidas estão ligadas entre 
si, como a figura apresentou. Devido a essa disposição, se as miras estão em coin-
cidência, ou seja, tocando uma a outra, sem sobreposição, em um meridiano e 
mudarmos a outro meridiano de maior potência, o tamanho de cada conjunto de 
miras se reduzirá. Caso a duplicação seja mantida, acabará ocorrendo uma sobre-
posição das imagens centrais. A magnitude da sobreposição fornece uma medida 
orientativa do astigmatismo, visto que as escalas das miras correspondem à aproxi-
madamente 1 dioptria. 
Podemos destacar as características principais do sistema Javal de ceratometria:
 9 Miras bicolores escalonadas;
 9 Duplicação fixa por meio do prisma de Wollaston;
 9 Separação ajustável das miras;
 9 Medida sequencial em distintos meridianos pelo giro do canhão.
1.3.1.2 Procedimento de medida
Tal qual todos os procedimentos optométricos, a mensuração no ceratômetro 
do tipo Javal é realizado de forma sistemática. Esse procedimento é relativamente 
fácil de ser realizado, e quanto mais treino, mais acurado fica. 
1.3.1.2.1 Ajuste da ocular
O procedimento de medida tem início no ajuste prévio do foco da ocular do 
microscópio para a eventual ametropia do observador. O ajuste da ocular deve ser 
feito sem a presença do paciente. A ocular geralmente vem acompanhada de uma 
escala graduada em dioptrias, o que ajuda o examinador a ajustá-la. 
Refração objetiva - Ceratometria unidade I
25
A função do ajuste da ocular é fazer com que o observador tenha foco e veja 
nítido sem utilizar a acomodação. Esse ajuste é considerado crítico e deve ser reali-
zado com máxima precisão. Para isso, devemos começar com o máximo poder 
hipermetrópico e ir variando o foco lentamente até encontrar a primeira posição 
em que a mira se torna nítida. Dessa forma, garantiremos que o observador não 
acomodará ao realizar a medida. Se o procedimento não for feito corretamente, uma 
medida com a calibração fora da necessidade do observador acarretaria em uma 
tomada errada de medidas.
1.3.1.2.2 Alinhamento e foco do ceratômetro
Neste passo, vamos realizar a medida no vértice corneano. Após higie-
nizado o aparelho (testeira e queixeira) com álcool 70 e um papel descartável, 
o paciente deve estar o mais estável possível, com a testa bem encostada na 
testeira e o queixo na queixeira. Continuamos com o alinhamento aproxi-
mado, para que o examinador estabeleça as marcas de referência externa do 
aparelho com posições específicas do paciente. Para finalizar o alinhamento, 
o observador deve ajudar a ocular. 
Uma vez realizado o alinhamento preliminar, devemos também fixar a orien-tação do olho do paciente. Para isso, podemos utilizar uma lanterna ou foco de luz 
através da ocular. Pedimos para o paciente olhar fixamente o centro do instrumento 
e com o foco de luz, a alinhamos com a córnea. 
Movendo o corpo do aparelho de forma lateral e longitudinal, que está ligado 
ao enfoque, devemos deixar as miras centrais do aparelho no centro do campo visual 
do paciente, coincidindo com o centro da linha de fé, corretamente focadas. Se as 
miras não estão centradas no momento da medida, estaremos medindo uma zona 
excêntrica da córnea, que pode apresentar um raio de curvatura maior e um certo 
astigmatismo por descentramento. Um foco incorreto dificulta um ajuste preciso 
e altera o aumento com relação à calibração, produzindo medidas inexatas e com 
maior variação.
Refração objetiva - Ceratometriaunidade I
26
1.3.1.2.3 Localização dos meridianos principais e medida do 
astigmatismo
O primeiro passo para a medida consiste em alinhar simultaneamente a linha 
de fé e a coincidência das bordas das miras. Começamos com as miras do cera-
tômetro alinhadas no meridiano 180 e depois realizamos o ajuste de coincidência, 
fixando, assim, as miras centrais. Para que isso ocorra, acionamos o comando de 
separação das miras até que elas estejam juntas, porém sem sobreposição. 
Figura 1.10 – Aspectos das miras do ceratômetro Javal
Fonte: FURLAN et al. (2009).
A figura 1.10 apresenta as possibilidades de contato justaposto entre as miras, 
sem sobreposição. No primeiro caso, em “a”, há o alinhamento da fenda das miras. 
Isso significa que o meridiano 180º é um dos meridianos principais, ou que a córnea 
é esférica. Já na segunda imagem, “b”, ocorre quando levamos as miras a se coin-
cidirem, mas não há alinhamento. Dessa forma, conseguimos compreender que o 
meridiano 180º não é um dos meridianos principais e que existe um astigmatismo 
Refração objetiva - Ceratometria unidade I
27
corneano. A partir dessa situação, giramos a cabeça do aparelho até conseguirmos 
o alinhamento, que resultará em um dos meridianos principais. Todavia, temos que 
ter em conta que ao girarmos o instrumento, as miras podem deixar de coincidirem, 
uma vez que a potência em outros meridianos é distinta da horizontal. Dessa forma, 
pode ser necessário o reajuste tanto do giro da cabeça do ceratômetro quanto da 
separação das miras.
Se o procedimento descrito acima for corretamente feito, chegaremos à confi-
guração das miras semelhante ao primeiro caso, “a”, exceto pelo alinhamento da 
fenda, que agora se encontra em meridiano oblíquo, como na figura “c”.
Nesse ponto, o alinhamento das miras garantirá que encontramos um dos 
meridianos principais, cuja orientação é dada após giro de cabeça. A coincidência 
das miras permite o uso da calibração do instrumento para a obtenção do raio de 
curvatura ou potência dos valores do primeiro meridiano principal.
Uma vez que encontramos o meridiano principal mais próximo ao plano hori-
zontal, giramos a cabeça do ceratômetro em 90º. Podem ser encontradas agora três 
situações, conforme a figura 1.11 apresenta.
Figura 1.11 – Coincidência das miras verticais do ceratômetro
Fonte: FURLAN et al. (2009).
Na primeira, as miras seguem em coincidência, como a figura “a”. Isso 
indica que a potência do segundo meridiano principal é igual a do primeiro. 
Essa coincidência de potência apenas será produzida se a córnea for esférica. 
As outras duas possibilidades aparecem quando as miras estão separadas 
entre si ou que se sobrepõe, como as figuras “b” e “c”, respectivamente.
Refração objetiva - Ceratometriaunidade I
28
Em qualquer dos dois casos, procederemos para mudar a separação entre as 
miras até conseguir de novo a coincidência. A leitura dos valores nos meridianos 
completa a medida ceratométrica da córnea. 
1.3.1.2.4 Estimação do astigmatismo corneano com o ceratômetro Javal
Devemos lembrar que o caso mais comum de astigmatismo na popu-
lação é o “a favor da regra”. Nele, a potência vertical é maior do que a do 
meridiano horizontal. Tal como vimos anteriormente, se temos as miras 
em coincidência em um meridiano corneano, ao passar para outro de 
maior potência, será produzida uma sobreposição entre as miras. O esca-
lonamento das miras do ceratômetro Javal tem precisamente o objetivo de 
poder medir o nível de sobreposição das miras. O tamanho da escala é tal 
que a diferença entre as potências corresponde ao número de escala de 
sobreposição.
Quando realizamos a medida do meridiano horizontal, ao girarmos as miras 
até o meridiano perpendicular (situação mais comum) acontecerá a produção de 
sobreposição das miras, como na figura c. Se contarmos o número da escala de 
sobreposição, teremos uma estima direta do valor astigmático corneano. Se, todavia, 
o astigmatismo é “contra a regra”, ocorrerá a separação das miras e a estimação 
direta não é possível, pois carecerá de referências de medida. Dessa forma, nesse 
caso, depois de coincidirmos as miras no meridiano vertical, devemos voltar ao meri-
diano horizontal e, então, obter a sobreposição proporcional ao astigmatismo. 
Refração objetiva - Ceratometria unidade I
29
Esse método não substitui a medida exata por meio da escala do ceratômetro, 
mas serve como uma ajuda para comprovar se o astigmatismo é contra ou a favor da 
regra, reduzindo a possibilidade de erros.
Uma possibilidade que ocorre com pouca frequência é aquela em que, ao 
girarmos a cabeça em 90º, perdemos o alinhamento. Nesse caso, o meridiano 
perpendicular ao primeiro não é um meridiano principal. Assim, nos deparamos com 
um astigmatismo irregular, com meridianos principais não perpendiculares entre si. 
Nesse caso, giraremos a cabeça até encontrarmos, se é possível, o alinhamento das 
fendas das miras mais próximas. Deveremos anotar o ângulo e a potência desse 
meridiano, além da observação de que se trata de um astigmatismo irregular.
Os passos descritos se repetem para ambos os olhos, começando pelo direito. 
Devido à movimentação voluntária e involuntária do paciente, ligada 
à falta de rigidez do queixo do paciente na queixeira, um ajuste focal e de 
centralização do ceratômetro é sempre preciso, pois uma medida exata 
necessita de estabilidade. É importante também manter a estabilidade do 
filme lacrimal durante a medida, pois em casos de secura, a zona adequada 
deixa de refletir adequadamente, impossibilitando a medida. O sujeito deve 
piscar de forma normal e natural durante todo o teste, até o momento da 
medida, em que devemos pedir para que pare de piscar por alguns instantes.
Na prática!
Com essa teoria, aliada com os materiais presentes no AVA, em especial o 
“Guia passo a passo da ceratometria Javal”, treine a ceratometria com seu 
colega de turma e fique bom nesse que é um dos principais procedimentos 
optométricos!
Refração objetiva - Ceratometriaunidade I
30
1.3.2 Ceratômetro Helmholtz
Figura 1.12 – Ceratômetro do tipo Helmholtz
Fonte: FURLAN et al. (2009). 
Popularmente conhecido como BL, ou Bausch & Lomb, devido à 
empresa que mais o fabricou, o ceratômetro do tipo Helmholtz apresenta 
algumas características que tornam seu uso mais fácil em relação ao Javal. 
Fundamentalmente, ele conta com uma forma de assegurar o foco corre-
tamente e, em casos de astigmatismo regular, permite mensurar os dois 
meridianos principais sem a necessidade de girar a cabeça para fazer duas 
medidas.
Refração objetiva - Ceratometria unidade I
31
1.3.2.1 Características
Figura 1.13 – Funcionamento do ceratômetro Helmholtz
Adaptada de: FURLAN et al. (2009).
Tal qual o ceratômetro Javal, o Helmholtz foi projetado sobre um microscópio 
que gira sobre um eixo de rotação. A frente do instrumento é uma placa opaca, 
onde se encontra um furo central diante da objetiva do microscópio e rodeado a ela 
encontra-se a mira do ceratômetro, que nesse caso é diferente do Javal, apresen-
tando um tamanho fixo.
Uma lâmpada por detrás da mira enviaa luz através dela para formar a imagem 
virtual na córnea do paciente. A mira, neste caso, tem forma circular, com duas 
cruzes e dois segmentos horizontais na parte exterior dos círculos. Esses símbolos 
são as marcas de referência para o alinhamento e a coincidência. A separação entre 
as marcas de referência é fixa, pois o ceratômetro é baseado em um sistema de 
duplicação variável. O sistema empregado é o de prismas deslizáveis ao longo do 
eixo do aparelho.
Uma característica básica do ceratômetro Helmholtz é que ele é um dispositivo 
de uma posição. O que isso significa? Uma vez ajustado, as escalas de medida dão a 
medida dos meridianos perpendiculares, sem a necessidade de girar o aparelho em 
Refração objetiva - Ceratometriaunidade I
32
90º. Isso é possível devido à introdução de um desdobramento independente em 
dois meridianos perpendiculares entre si. 
A objetiva do microscópio é coberta por um diafragma com quatro aberturas. 
As aberturas numeradas em 1 e 2 estão alinhadas com dois prismas, de desvio hori-
zontal e vertical, respectivamente. Assim, a luz que atravessa a abertura 1, atravessa 
um prisma de base lateral e produz uma imagem desviada em direção horizontal à 
imagem da mira produzida por reflexão na córnea. De forma análoga, a luz que atra-
vessa a abertura 2 passa através do outro prisma que desvia a imagem em direção 
vertical. Os dois prismas podem deslizar de forma independente, variando o desdo-
bramento nos meridianos horizontal e vertical separadamente, por meio de 
comandos giratórios. 
Esse dispositivo permite chegar à coincidência das marcas de referências nos 
dois meridianos sem a necessidade de girar a cabeça do aparelho entre um e outro. 
Para alinhar qualquer um dos meridianos principais com as direções do desdobra-
mento, coincidentes com as marcas de referência, todo o canhão gira com relação 
ao eixo óptico. 
A principal vantagem dos ceratômetros de uma posição reside no fato de 
podermos ajustar os dois meridianos principais simultaneamente, sem existir o 
risco de movimentos do paciente que possam prejudicar a medida de algum dos 
meridianos.
O diafragma que recobre a obje-
tiva tem duas aberturas adicionais, sem 
prismas associados, que correspondem 
a um disco de Scheiner. A função desse 
dispositivo é fornecer uma ajuda 
para focar. Dessa forma, observamos 
através da ocular o plano do retículo 
e a imagem aérea das miras que se 
encontram diretamente nesse plano. 
O disco de Scheiner produzirá uma 
imagem única, similar à que teríamos 
em uma abertura única.
Se, ao contrário, a imagem 
aérea está desfocada, cada uma 
das aberturas dará lugar a uma 
imagem ligeiramente deslocada na 
Refração objetiva - Ceratometria unidade I
33
direção da abertura, dando como resultado uma imagem duplicada. Para assegurar 
um foco correto, é necessário apenas ajustar a posição do ceratômetro até conseguir 
que desapareça a imagem dupla. Todavia, não devemos confundir o deslocamento 
da imagem com a duplicação da medida.
Em conjunto ao efeito das quatro aberturas da máscara do diafragma, 
quando observamos por meio do ceratômetro a imagem das miras, anali-
samos quatro imagens de miras, conforme a figura 1.14a demonstra. 
Nessa figura, podemos assumir que o foco não está correto. Cada uma das 
imagens corresponde a cada abertura no diafragma (a imagem da esquerda 
corresponde à abertura 1, a superior à 2 e os vértices 3 e 4). Uma vez que 
conseguimos focar o instrumento, apenas observamos três imagens, apare-
cendo sobrepostas duas das quatro imagens originais, como a figura 1.14b.
Figura 1.14 – Aspectos das miras do ceratômetro Helmholtz
Fonte: FURLAN et al. (2009).
No ceratômetro Javal, a situação de coincidência ocorria quando as miras 
entravam em contato, sem sobreposição. Para o Helmholtz, a coincidência é tradu-
zida na sobreposição dos sinais + e – para os meridianos principais da córnea.
Refração objetiva - Ceratometriaunidade I
34
1.3.2.2 Procedimento de medida
Começamos o processo igual ao ceratômetro Javal, ajustando a 
ocular. Podemos fazer sem a presença do paciente e o objetivo é fazer 
com que o examinador veja nitidamente e sem empregar a acomo-
dação o retículo. O retículo no Helmholtz geralmente é uma cruz na 
circunferência central, como a figura demonstra. 
Depois devemos alinhar o ceratômetro ao olho do paciente 
e verificar o foco das imagens das circunferências. Devemos buscar 
a posição de medida ajustando as miras vertical e horizontal por 
meio de comandos do ceratômetro até chegar à coincidência das 
marcas referenciais + e -. Os comandos, nesse instrumento, estão 
nomeados em horizontal e vertical, e comandam ambos meridianos 
independentemente.
Primeiramente, o canhão do aparelho está posicionado com as 
marcas de referência da mira com forma + no meridiano horizontal. 
Se o meridiano horizontal for um dos meridianos principais, ou a 
córnea for esférica, os sinais + da mira central e da esquerda estarão 
alinhados, fazendo com que os segmentos horizontais sigam sobre 
uma linha igual. Um exemplo ocorre na figura 1.14b.
Todavia, se o meridiano horizontal não é um dos meridianos 
principais, os segmentos horizontais + não estarão alinhados, como na 
figura 1.15a. Nesse caso, devemos girar a cabeça do instrumento até 
conseguirmos um alinhamento, como na figura 1.15b. Uma vez que 
as miras se encontram alinhadas, conseguiremos a coincidência delas. 
Depois que as miras referenciais + estiverem coincididas, devemos 
unir o meridiano perpendicular, com referência -. Todas as miras coin-
cididas, chegamos à situação da figura 1.15c. 
Refração objetiva - Ceratometria unidade I
35
Figura 1.15 – Procedimento de coincidência das miras oblíquas no ceratômetro Helmholtz
Fonte: FURLAN et al. (2009).
O ceratômetro Helmholtz tem uma vantagem em relação ao modelo Javal. A 
parte circular da mira não tem uma finalidade para a medida, mas suas deformações 
podem indicar problemas na córnea e também a quebra do filme lacrimal, apre-
sentando zonas descontínuas na circunferência nas partes da córnea onde faltam 
lágrimas.
Em ocasiões especiais, podemos medir córneas com astigmatismo irregular. 
A única opção, nesse caso, é utilizar o instrumento como se fosse de duas posições, 
usando apenas a medida horizontal.
Resumindo, então, as características do ceratômetro Helmholtz, temos:
 9 Miras fixas;
 9 Desdobramento variável por meio de prismas deslizantes;
 9 Foco preciso pelo disco de Scheiner;
 9 Medida simultânea dos dois meridianos principais.
Na prática!
Agora que você já sabe como fazer o procedimento Helmholtz, treine com 
seu colega de turma como fazer o procedimento utilizando o conteúdo no 
AVA chamado “Guia passo a passo de ceratometria Helmholtz”. 
Refração objetiva - Ceratometriaunidade I
36
Importante!
É importante que você saiba como anotar e estimar o tamanho do astig-
matismo corneano. Para isso, é imprescindível que você acesse no AVA o 
conteúdo “Anotações e cálculo do astigmatismo corneano”.
Às vezes, você não conseguirá realizar a ceratometria . Para isso, existe 
um “gato” para aumentar a amplitude da medida. Ficou curioso de como 
fazer? Acesse o conteúdo “Estendendo a amplitude de medida” no AVA.
A ceratometria é uma técnica de medida objetiva da córnea. Todavia ela 
não serve apenas para refração. Quer saber outros usos? Acesse o conteúdo 
“Outras técnicas e usos da ceratometria” presente no AVA e conheça mais.
1.4 Regra de Javal
Convencionalmente, dividimos o astigmatismo refrativo total, At, de um olho 
em dois componentes: o astigmatismo corneano, Ac, pois a córnea é a primeira lente 
do aparelho óptico e a mais poderosa; e o astigmatismo residual, Ar, que engloba o 
cristalino e os demais meios refrativos. Uma equação simples para descrever o astig-
matismo pode ser escrita:
At = Ac + Ar
Devido à predominância do astigmatismo corneano no astigmatismo total, 
podemos dizer então que o astigmatismocorneano é suficiente para se ter uma 
boa estimativa do astigmatismo total do olho. O astigmatismo residual provém dos 
demais meios refrativos do olho, em especial o cristalino, especialmente por sua 
descentralização e inclinação em relação ao eixo visual. Estatisticamente, o astigma-
tismo interno é bastante similar na maior parte da população, sendo seu valor médio 
de 0,50 (-0,50 DC x 90 ou +0,50 DC x 180). Todavia, é importante salientar que esse 
valor não é exato, então cremos no valor aproximado do astigmatismo residual de 
+/- 0,50.
Bom, se o astigmatismo total pode ser estimado a partir do astigmatismo de 
córnea, podemos dizer que essa relação é bem conhecida há muito tempo. Assim, a 
Refração objetiva - Ceratometria unidade I
37
medida das curvaturas da córnea tem o efeito de ser um auxílio importante para a 
refração. 
Javal, estudioso espanhol, realizou estatísticas sobre a medida do astigmatismo 
para obter uma relação empírica entre o astigmatismo corneano, a partir de seu 
ceratômetro, e o total. Baseando em suas medidas, ele chegou, em 1890, à seguinte 
equação, conhecida como Regra (ou Lei) de Javal:
At = 1,25 Ac - 0,50 DC x 90
A Lei de Javal foi revisada detalhadamente por Grosvenor e seus colaboradores 
em 1988, ao realizarem um estudo estatístico com mais de mil olhos. À luz de suas 
próprias medidas, eles propuseram uma simplificação da regra de Javal, que, por sua 
vez, ajusta-se melhor aos resultados experimentais do que a original. A nova fórmula 
proposta é:
At = Ac - 0,50 DC x 90
Essa expressão é chamada de “Regra de Javal simplificada”. Tanto a regra 
de Javal, quanto a simplificada, são aplicadas em caso nos quais o astigmatismo 
corneano é a favor da regra ou contra a regra.
Aprendemos que:
Nesta unidade, aprendemos um pouco sobre o que é o ceratômetro, um 
dos principais dispositivos de refração objetiva. Com ele, podemos analisar 
a córnea, sua dioptria e estimar um erro refrativo. Temos dois aparelhos: 
o Javal e o Helmholtz, que apresentam certa diferença e especificidades. 
Por meio da lei de Javal, conseguimos estimar um valor aproximado de 
astigmatismo do paciente.
Refração objetiva - Ceratometriaunidade I
38
Referências da unidade I
ALVES, Milton Ruiz. Refratometria ocular e a arte da prescrição médica. 3. ed. Rio 
de Janeiro: Guanabara-Koogan, 2013.
BENJAMIN, W. Borish’s clinical refraction. 2. ed. Filadelphia: W. B. Saunders, 2006.
CARLSON, Nancy. Clinical procedures for ocular examination. 4. ed. New York: McGraw-
Hill Education, 2015.
FURLAN, W. Fundamentos de Optometria. Refraccion Ocular. 1. ed. Valencia: 
Universidad Valencia, 2009.
MARTIN, Raul; VECILLA, Gerardo. Manual de Optometria. 2. ed. Madrid: Médica 
Panamericana, 2012. 
Refração objetiva - Retinoscopia unidade II
39
2unidade II
2Refração objetiva - Retinoscopia
2.1 A retinoscopia
A retinoscopia, ou esquiascopia (palavra q
ue vem do grego σκιόεις, que 
significa sombra e σκοπέω, que significa
 observar, logo “observação das 
sombras”) é um método objetivo de refra
ção. 
Dessa forma, ela pode ser obtida sem que o paciente informe qualquer tipo de 
resposta, apenas com o examinador interpretando o comportamento da luz refletida 
na retina através do retinoscópio.
Para realizar a retinoscopia, é necessária uma leve colaboração do paciente, 
para que ele mantenha sua fixação no objeto, seja o optotipo para perto, para longe, 
seja qualquer outro estímulo. A retinoscopia reduz o tempo e os erros na refração, 
além de ser imprescindível na hora de realizar a refração em situações em que a 
2Comando 
Tabela
Refração objetiva - Retinoscopiaunidade II
40
comunicação é difícil ou impossível, como em crianças não verbais, pessoas com 
problemas mentais, surdos ou muito idosos.
2.1.1 O retinoscópio
O retinoscópio é um instrumento que combina um sistema de iluminação 
com um sistema de observação no mesmo eixo. Dessa forma, um feixe de luz é 
projetado, seja uma faixa, seja um ponto, sobre o fundo do olho. O sistema de 
observação permite ver o reflexo de luz proveniente da retina do olho explorado 
através do espelho. Esses raios são afetados por todo o estado refrativo do olho pelo 
qual, dependendo das características de seu movimento, você vai poder detectar 
problemas refrativos, como a miopia, a hipermetropia ou o astigmatismo.
2.1.2 Sistema de iluminação ou de projeção
O sistema de projeção ilumina a retina do olho explorado e é composto pelas 
seguintes partes:
Figura 2.1 – Representação de um retinoscópio
Espelho semitransparente
Luva de comando
Lente condensadora
Fonte de iluminação
RETINOSCÓPIO
PACIENTEAVALIADOR
Adaptada de: MARTIN; VECILLA (2010).
Refração objetiva - Retinoscopia unidade II
41
Fonte de iluminação: constituída de uma lâmpada com um filamento 
linear, ela projeta uma linha ou um faixa de luz que pode ser rotacionada 
para explorar diferentes meridianos.
Lente condensadora: consiste em uma lente que focaliza a luz da 
lâmpada no espelho do retinoscópio.
Espelho: situado na cabeça do aparelho, ele pode apresentar um 
orifício central ou estar semirrevestido para que os raios de luz refletidos 
na retina do olho possam ser explorados.
Figura 2.2 – Tipos de retinoscópio e espelhos
Espelho Plano Espelho PlanoEspelho Côncavo Espelho Côncavo
RETINOSCÓPIO DO TIPO COPELAND RETINOSCÓPIO WELCH-ALLYN
Adaptada de: MARTIN; VECILLA (2010).
Refração objetiva - Retinoscopiaunidade II
42
Luva de comando: esse sistema permite variar a distância entre a 
lâmpada e a lente, de modo que o retinoscópio possa projetar os raios diver-
gentes quando o espelho estiver na posição plana, ou raios convergentes, 
quando o espelho estiver na posição côncava. Na maioria dos retinoscópios, 
a mudança focal ocorre ao alterar verticalmente o comando de focagem. 
Na figura 2.2, temos o sistema Copeland, em que o espelho plano fica na 
posição superior e o côncavo na inferior, enquanto no sistema Welch-Allyn 
temos o espelho plano na parte inferior e o côncavo na parte superior.
Fonte de energia: está situada no cabo do aparelho. O retinoscópio 
pode ser alimentado por baterias ou conexão com a rede elétrica. Ele dispõe 
de um reostato que permite modificar a intensidade da luz e o consumo de 
energia.
Podemos, ainda, diferenciar os tipos de retinoscópio em dois, pela forma com 
que projetam a luz. O retinoscópio de ponto produz uma luz em forma de cone, 
enquanto o retinoscópio de faixa apresenta uma luz em forma de faixa luminosa. 
Este é o tipo mais utilizado.
Figura 2.3 – Diferença entre retinoscopia de ponto e de faixa 
Fonte: FURLAN et al. (2009). 
Refração objetiva - Retinoscopia unidade II
43
2.1.3 Sistema de observação
O sistema de observação permite ver o reflexo luminoso proveniente da retina 
do olho explorado por meio do espelho. Estes raios são afetados pelo estado refrativo 
do olho, o que faz com que as características do movimento possam ser detectadas e 
interpretadas como defeitos refrativos.
2.2 Conceitos básicos de retinoscopia
Nesta subunidade você vai compreender o funcionamento da retinoscopia, 
com as características básicas para sua realização. 
2.2.1 Reflexo retiniano
Em condições normais, a luz do retinosc
ópio viaja até o paciente e a 
imagem da luz é formada em sua retina.
 Dessa forma, na pupila do cidadão, 
é observado um reflexo luminoso proce
dente ou refletido pela retina. Esse 
fenômeno tem o nome de reflexo retinia
no. Ao mesmo tempo, por fora da 
pupila, podemos ver uma faixa luminosa 
emitida pelo retinoscópio. A relação 
entre o movimento e o restante desses r
eflexos é utilizada para determinar 
o estado refrativo do olho.
No reflexo retiniano de uma pessoa emétrope, os raios refletidos são para-
lelos ao eixo óptico, enquanto em um hipermétrope são divergentes e no míope são 
convergentes, conforme a figura 2.4 demonstra.
Refração objetiva - Retinoscopiaunidade II
44
Figura 2.4 – Formação da imagem da luz na retinaEMÉTROPE HIPERMÉTROPE MÍOPE
Fonte: MARTIN & VECILLA (2010).
2.2.2 Tipos de sombras
As sombras são definidas como movimento a favor (ou direta), quando o movi-
mento da faixa de luz emitida pelo aparelho e o movimento da luz refletida pela 
retina do olho têm direções iguais, e movimento contra (ou inversa) quando apre-
sentam direções opostas, tal qual a figura 2.5 apresenta.
Figura 2.5 – Tipos de sombra e movimento retiniano
REFLEXO RETINIANO MOVIMENTO A FAVOR MOVIMENTO CONTRA
Adaptada de: MARTIN; VECILLA (2010).
Refração objetiva - Retinoscopia unidade II
45
2.2.3 Espelhos
Nesta subunidade, você aprenderá o conceito e um pouco mais sobre o funcio-
namento dos espelhos que o retinoscópio apresenta, em especial quando usar um e 
quando usar o outro.
2.2.3.1 Espelho plano
Na posição do espelho plano, a luz emit
ida pelo retinoscópio é diver-
gente e a presença de sombras diretas (m
ovimento a favor) pode significar a 
presença de miopia menor do que 1,50D
 para uma distância de trabalho de 
aproximadamente 66 cm, emetropia ou h
ipermetropia.
Isso significa que o ponto remoto do p
aciente está situado atrás da 
retina (ponto virtual). Todavia, em situaç
ão contrária, quando há a presença 
de sombras inversas, significa miopia s
uperior a 1,50D, ou seja, o ponto 
remoto do paciente deve estar situado 
antes da retina, como a figura 2.6 
demonstra.
Figura 2.6 – Faixas, movimentos de sombras retinianas, 
suas relações com as ametropias e lente de trabalho.
Com lente corretora de +1,50D Sem lente corretora
Disponível em: <https://bit.ly/3958cXK>. Acesso em: 17/12/2019. 
Refração objetiva - Retinoscopiaunidade II
46
2.2.3.2 Espelho côncavo 
No caso da posição do espelho côncavo, a luz emitida pelo retinoscópio é 
convergente (aproximadamente a 35 cm) e, portanto, o significado do movimento 
das sombras é o contrário aplicado à posição do espelho plano. Dessa forma, o 
movimento a favor significa miopias maiores do que 1,50D, e o movimento contra, 
menores do que 1,50D para a distância de trabalho de aproximadamente 66 cm, 
emetropia ou hipermetropia.
2.2.3.3 Neutralização
O objetivo da retinoscopia é neutralizar as sombras com a ajuda de lentes, que 
podem ser positivas no caso de movimento a favor, ou negativas para o movimento 
contra, até que não se tenha mais movimento algum. O ponto de neutralização ocorre 
quando situamos o ponto remoto (PR) do paciente na abertura do retinoscópio, de 
modo que todos os raios que refletem na retina do olho e a pupila apareçam unifor-
memente iluminados em todos os movimentos.
Para que alcancemos a neutralização, é necessário que conheçamos o estado 
refrativo exato. Na realidade, a neutralização não é um ponto, mas sim uma zona, 
cuja magnitude depende das dimensões da pupila e da distância de trabalho. A 
determinação da zona de neutralização não é algo simples, uma vez que se trata 
de um ponto dentro de uma zona de dúvida, logo quando a direção das sombras 
começa a mudar.
Refração objetiva - Retinoscopia unidade II
47
Figura 2.7 – Características dos fenômenos de faixa, 
reflexo retiniano, brilho e largura nos movimentos a favor e contra
A favor Contra
Neutralização
Devagar
Opaca
Fina
Movimento a favor Movimento contra
Rápida
Brilhante
Larga
Rápida
Brilhante
Larga
Devagar
Opaca 
Fina
Sem 
Movimento 
Brilhante 
Pupila Cheia
Disponível em: <https://bit.ly/2Or8Jvo>. Acesso em: 17/12/2019. 
Quando chegamos à zona de dúvida, é pr
eferível escolher a lente ante-
rior à inversão do movimento das sombr
as.
2.2.4 Distância de trabalho 
O objetivo da retinoscopia é situar o ponto remoto 
do paciente na abertura do aparelho, enquanto da 
refração no infinito óptico, de modo que sua 
imagem se forme na retina na ausência de 
acomodação. Para calcularmos o estado refra-
tivo real do paciente para longe, é necessário 
medir o equivalente da distância em que a reti-
noscopia foi realizada em dioptrias, com lentes 
que neutralizam o movimento das sombras.
Refração objetiva - Retinoscopiaunidade II
48
Chamamos de retinoscopia bruta o valor da lente que neutraliza o movimento 
das sombras, enquanto denominamos retinoscopia líquida o valor da retinoscopia 
bruta menos a distância de trabalho.
Importante!
A distância de trabalho é a distância do instrumento do examinador até 
o olho examinado, que é geralmente equivalente à distância do braço do 
examinador.
Na prática!
Vamos medir a sua distância de trabalho. Para isso, segure o retinoscópio 
próximo ao olho, como se estivesse olhando através do orifício. Com o 
outro braço esticado, fique em uma posição confortável, de modo que 
consiga trocar as lentes. A distância do instrumento até a outra mão é a 
distância de trabalho. Meça-a com uma fita métrica.
A distância de trabalho é útil para sabermos o valor que vamos descontar ou 
acrescer à potência encontrada na esquiascopia. Para isso, vamos transformar a 
distância de trabalho em uma dioptria. Você se lembra de como se faz?
Supondo que a distância do retinoscópio à sua mão (ou seja, a distância do 
braço) é de 50 cm, quanto seria a nossa distância de trabalho em dioptrias?
Esse valor encontrado é importante, pois para encontrarmos a retinoscopia 
líquida, precisamos subtrai-lo da retinoscopia bruta. Por exemplo, se fizermos uma 
retinoscopia e encontrarmos um valor bruto de +6,00, qual será o valor da retinos-
copia líquida, se minha distância de trabalho for 40 cm?
Refração objetiva - Retinoscopia unidade II
49
Retinoscopia líquida = Retinoscopia bruta 
Retinoscopia líquida 
Retinoscopia líquida 
Retinoscopia líquida 
2.2.5 Lente de trabalho
Para evitar a necessidade de realização de cálculos para encontrarmos o valor 
da retinoscopia líquida, podemos utilizar uma lente de trabalho. Isso significa que 
podemos colocar uma lente fixa na armação de provas ou foróptero, cujo valor seja 
igual ou correspondente ao poder dióptrico da distância de trabalho, e dessa forma, 
realizar a retinoscopia.
Dessa forma, uma vez que conseguimos chegar ao ponto de neutralização do 
movimento, basta que retiremos a lente de trabalho para obter o valor da retinos-
copia líquida. Esse procedimento pode apresentar vantagens, como reduzir possíveis 
erros de cálculo, além de permitir um procedimento mais rápido.
2.3 Características do reflexo
Ao realizar a retinoscopia, você deve prestar atenção em alguns detalhes muito 
importantes. Primeiro, deve determinar o tipo de sombra, se o seu movimento é a 
favor ou contra. Assim, antes de começar a colocar lentes para neutralizar o movi-
mento, é importante que três características básicas do reflexo sejam observadas: a 
velocidade do movimento, o brilho e a largura.
2.3.1 Velocidade
Os erros refrativos elevados produzem reflexos lentos, visto que o reflexo 
se move com menor velocidade quanto mais longe se encontra o ponto remoto, 
Refração objetiva - Retinoscopiaunidade II
50
aumentando a velocidade à medida que se aproxima dele. Contudo, erros refrativos 
menores produzem reflexos rápidos.
2.3.2 Brilho
Com relação ao brilho, quanto mais longe está o ponto de neutralização, menos 
intenso será o reflexo. Ao se aproximar do ponto remoto, ele ficará mais brilhante. 
Os movimentos contrários produzem menor brilho do que os movimentos a favor 
do erro refrativo. Dessa forma, pode ficar mais fácil trabalhar sempre com sombras 
diretas, ou seja, com movimento a favor. 
2.3.3 Largura
A largura do reflexo é menor quanto mais afastado está o ponto remoto e o 
preenchimento da pupila ocorrerá quando se alcança o ponto de neutralização.
2.4 Fazendo retinoscopia
Podemos realizar a retinoscopia utilizando a caixa de provas, o foróptero ou 
a régua de esquiascopia, que consiste em lentes de poder crescente alinhadas de 
maneira que podemos realizar o procedimento mais rápido do que com lentes soltas. 
Figura 2.8 – Caixa de provas (a); Foróptero (b); Régua de esquiascopia (c).
A B C
Fonte: RAMOS MEJIA(2019).
Refração objetiva - Retinoscopia unidade II
51
Para que consigamos realizar uma boa retinoscopia, podemos manter uma 
iluminação baixa ou penumbra, para facilitar a observação das sombras e diminuir a 
miose. Na retinoscopia estática, o paciente deve manter os dois olhos abertos e olhar 
fixamente um estímulo, como o maior optotipo (20/200 geralmente), estimulando ao 
mínimo a acomodação. Podemos também embaçar a visão do olho não explorado 
com uma lente de aproximadamente +2,00D, de modo a relaxar a acomodação. O 
examinador realiza primeiro o procedimento no olho direito do paciente utilizando o 
instrumento em seu próprio olho direito, enquanto usa o esquerdo no olho esquerdo 
do paciente. Dessa forma, garantimos que o sujeito possa sempre manter o olhar no 
ponto infinito com olho não explorado, como mostra a figura 2.9.
Figura 2.9 – Posição do examinador e do paciente na retinoscopia
PACIENTE OPTOTIPO
RETINOSCÓPIO
EXAMINADOR
d = 66 cm
Adaptada de: MARTIN; VECILLA (2010).
É importante que você realize a retinoscopia no eixo óptico do paciente, ou 
seja, que veja o reflexo retiniano proveniente da mácula. Pode haver uma mínima 
obliquidade na observação de 3º aproximadamente. Nessa posição, identificamos o 
tipo das sombras (se estão a favor ou contra o movimento) e neutralizamos com as 
lentes adequadas.
Refração objetiva - Retinoscopiaunidade II
52
2.4.1 Determinando a refração
A principal função da retinoscopia é a exploração, busca, análise e diagnóstico 
de erros refrativos do paciente. Dessa forma, você deve determinar primeiro qual é 
o tipo do erro refrativo que ele apresenta, para então determinar os valores encon-
trados. Nesta subunidade você aprenderá como qualificar e quantificar os erros 
refrativos com a técnica da retinoscopia.
2.4.1.1 Ametropias esféricas
Para encontrarmos as ametropias esféricas, como miopia e astigmatismo, 
devemos entender que as sombras aparecerão na mesma velocidade, brilho e inten-
sidade em todos os meridianos. Portanto, vamos neutralizá-los utilizando lentes 
esféricas. Também podemos estimar a quantidade da ametropia utilizando as 
seguintes técnicas:
Miopia: o avaliador pode se aproximar do paciente com o retinoscópio, 
na posição do espelho plano, até que as sombras fiquem a favor. Depois, 
voltará para trás até encontrar a zona de neutralização. Nesse momento, o 
avaliador estará no ponto remoto do paciente, e a conversão da distância 
em dioptrias demonstrará o grau de miopia apresentada. Uma vez reali-
zada a medição, devemos afinar a retinoscopia à distância de trabalho. Essa 
técnica é mais indicada para miopias entre -5,00 e -10,00D. 
Hipermetropia: podemos utilizar a técnica do realce, que consiste em subir 
lentamente o comando do retinoscópio, passando da posição de espelho 
plano para côncavo, até fazermos o reflexo retiniano o mais estreito 
possível. Se não pudermos estreitar o reflexo retiniano, trata-se de uma 
hipermetropia de 1,00D ou menor, ainda que se o reflexo retiniano se 
estreite com um pequeno movimento do comando, a hipermetropia pode 
oscilar em torno de +2,00D. Quando o comando se move em sua totalidade, 
conseguimos o máximo realce do reflexo retiniano. Isso significa uma hiper-
metropia acima de +5,00D.
Refração objetiva - Retinoscopia unidade II
53
Importante!
Em ametropias mais elevadas, podemos ter a sensação de não existir 
sombras, e isso ser confundido com o ponto de neutralização ou alguma 
alteração nos meios refrativos. Para confirmar se a ausência de sombras é 
correspondente ao ponto de neutralização, o examinador pode se postar 
de 10 a 15 cm do paciente. Se aparecerem sombras a favor (com espelho 
plano), confirmamos a suspeita de ser o ponto de neutralização. Entretanto, 
se o reflexo não se alterar, podemos estar diante de uma alta ametropia ou 
defeito nos meios refrativos. Para descartar a segunda hipótese, podemos 
colocar lentes de maior potência, como 3,00, 5,00 ou 10,00 D. Se conti-
nuar sem aparecerem sombras, confirmamos a suspeita de problemas nos 
meios transparentes.
2.4.1.2 Ametropias cilíndricas
Na retinoscopia, nós podemos reconhecer a presença do astigmatismo quando 
encontramos reflexos diferentes em cada meridiano principal, nos quais podemos 
encontrar diferentes velocidades, larguras e brilhos das faixas. Quando não explo-
ramos na mesma direção que o meridiano principal, podemos observar que o 
movimento do reflexo não é paralelo à faixa.
Dessa forma, para realizarmos a retinoscopia em um olho com astigmatismo, 
podemos encontrar três situações:
 9 As sombras de ambos os meridianos estão a favor;
 9 A sombra de ambos os meridianos estão contra;
 9 Um dos meridianos apresenta sombra a favor e o outro apresenta contra.
2.4.1.2.1 Localização do eixo cilíndrico
Existem quatro fenômenos que permitem encontrar o eixo cilíndrico:
Refração objetiva - Retinoscopiaunidade II
54
1. Fenômeno da quebra: quando não estamos explorando na direção 
do meridiano principal. O reflexo retiniano e a faixa não são coincidentes, 
apresentando uma quebra de paralelismo. Devemos, então, girar a faixa 
para torná-la paralela ao reflexo retiniano.
Figura 2.10 – Fenômeno da quebra de continuidade da faixa 
Fonte: MARTIN; VECILLA (2010). 
2. Fenômeno da largura: o reflexo retiniano aparece mais fino quando 
coincide com a direção do eixo cilíndrico. 
Figura 2.11 – Alinhamento da faixa com o reflexo 
Fonte: MARTIN; VECILLA (2010). 
Refração objetiva - Retinoscopia unidade II
55
3. Fenômeno da intensidade: o reflexo retiniano aparece mais brilhante 
quando coincide com o eixo.
4. Fenômeno da inclinação: ocorre quando a orientação é correta e 
podemos mover ligeiramente a faixa sem rotacioná-la, produzindo um 
movimento paralelo ao reflexo retiniano. Ainda que estejamos em uma 
orientação equivocada, o reflexo e a faixa se movem em direções diferentes.
Figura 2.12 – Inclinação da faixa com relação ao reflexo retiniano para encontrar 
o eixo do meridiano principal
Reflexo 
largo
Faixa
Faixa
No eixo
Reflexo fino
Faixa fora do eixo Faixa fora do eixo Fora do eixo
Quebra
Reflexo 
Retiniano
Movimento
Disponível em: <https://bit.ly/31qkszB>. Acesso em: 17/12/2019. 
Importante!
Na prática clínica, os fenômenos de quebra e largura são mais úteis em 
cilíndricos elevados, ainda que os de intensidade de brilho e inclinação 
proporcionem mais ajuda nos casos de cilíndricos menores.
Refração objetiva - Retinoscopiaunidade II
56
Uma vez que você neutralizou o reflexo retiniano, pode afinar o eixo cilíndrico 
com a técnica do cavalgamento, que consiste em mudar 45º em cada direção do eixo 
proposto e comparar ambas as imagens. No caso de serem diferentes, em relação 
ao brilho, largura ou definição, o eixo proposto estará errado. Para calcular a orien-
tação adequada, é necessário mudar o cilindro até o lado em que o reflexo retiniano 
seja mais brilhante e estreito, até que não encontre mais diferença entre as imagens.
2.4.1.2.2 Neutralização da potência cilíndrica
Basicamente, existem dois modos diferentes de neutralizar as sombras do 
astigmatismo:
Neutralização com lentes esféricas: uma vez que você identificou os 
dois meridianos principais, você neutraliza um deles com lentes esféricas. 
Gire a faixa em 90º e neutralize o outro meridiano com lentes esféricas. 
Anote os dois esféricos e a orientação de cada meridiano.
Importante!
Ao realizar a retinoscopia, identifique os dois meridianos principais. Se eles 
tiverem as sombras a favor do movimento em 90 e 180º, coloque a faixa 
de maneira vertical para explorar o meridiano horizontal. Digamos que 
conseguimos a neutralização com uma lente esférica de +5,50D. Gire a 
faixa 90º, ou seja, a faixa que antes estava vertical, agora é horizontal, 
para explorar o meridiano vertical. Dessa forma, digamos que o reflexo foi 
neutralizado com +2,00D e a refração desse olho será: 
Refração objetiva - Retinoscopia unidade II57
Na prática!
Querido aluno, para fixar um pouco a questão da retinoscopia utilizando 
lentes esféricas, vamos fazer um exercício.
Digamos que um paciente entra em seu consultório e você irá atendê-lo. 
No olho direito, ao explorar o meridiano horizontal, com a faixa a 90º, foi 
encontrado a potência de +2,50D. Ao alterar a faixa em 90º, você verifica 
que as sombras estão fazendo um movimento contra, com uma diferença 
de 1,00D do outro meridiano. Qual é a refração desse olho?
Neutralização com lentes esféricas e cilíndricas: você pode neutra-
lizar o meridiano mais positivo com a lente esférica e o outro com uma lente 
cilíndrica. Esse procedimento é mais preciso, por permitir a comprovação 
da neutralização de todos os meridianos. 
Importante!
Se utilizarmos o exemplo anterior, depois de neutralizar o meridiano hori-
zontal com uma lente de +5,50D, ao explorar o meridiano vertical, você 
verá as sombras com movimento contra que podem ser neutralizadas com 
um cilíndrico negativo de -3,50D. A orientação do cilíndrico deve ser igual a 
da orientação da faixa, nesse caso, em 180º. 
Quando colocamos a faixa na orientação vertical (90º), exploramos o meridiano 
horizontal (180º), pois o movimento necessário para observar as sombras é realizado 
da direita para a esquerda, no plano horizontal. Ao contrário, se colocarmos a faixa 
na orientação horizontal (180º), o movimento a ser realizado será de cima para baixo, 
ou seja, o meridiano explorado será o vertical. Por esse motivo, o eixo do cilíndrico 
vai coincidir com a orientação da faixa e não com a orientação do reflexo retiniano.
Refração objetiva - Retinoscopiaunidade II
58
Figura 2.13 – Passo a passo de como realizar a retinoscopia estática
Passo 1
Localize os meridianos principais e escolha um deles, de prefe-
rência o que apresentar a ametropia mais positiva ou menos 
negativa. Identifique o tipo de movimento das sombras do 
reflexo retiniano, que nesse caso, são a favor.
Passo 2
Neutralize o movimento utilizando lentes esféricas (nas imagens 
com uma esfera positiva de +3,00D, pois se trata de sombras a 
favor).
Passo 3
Mantendo a lente que neutralizou o primeiro meridiano, gire 
a faixa em 90º e identifique o tipo de movimento das sombras 
(de acordo com o passo 1, as sombras estarão em sentido 
contrário, tal qual a imagem).
Passo 5
Calcular a fómula esferocilíndrica:
Opção A:
Faixa vertical +3,00D e faixa horizontal +1,0D
Bicilíndrica de +3,00 90º x +1,00 180º
Esferocilíndrica +3,00 esf. -2,00 cil. 180º
Opção B:
Você consegue a esferocilíndrica direto: +3,00 <> -2,00 x 180º
Passo 4 - Opção A
Neutralize o movimento com lentes esféricas, diminuindo a sua 
potência até conseguir um novo ponto de neutralização (no 
caso, com uma lente esférica de +1,0D).
Passo 4 - Opção B
Você também pode neutralizar o segundo meridiano com uma 
lente cilíndrica negativa de -2,00D, pois se trata de um movi-
mento contrário à da faixa com a qual foi neutralizada.
1
2
3
4 A
4 B
5
+3,00
+3,00
+3,00
-2,00
+1,00
Adaptada de: MARTIN; VECILLA (2010).
Refração objetiva - Retinoscopia unidade II
59
Na prática!
Vamos agora aprender o passo a passo de como realizar a retinoscopia 
estática:
1. Instrua o paciente a fixar o olhar no objeto o mais longe possível e 
examine o olho direito;
2. Determine se o erro refrativo é esférico ou astigmático, mudando a 
posição da luva de comando do retinoscópio e a distância entre o exami-
nador e o paciente até o reflexo retiniano a ser neutralizado. Feito isso, 
gire a luva em 360º, de modo a verificar se há o fenômeno da quebra, da 
mudança de brilho dentro da pupila:
a. Se o erro refrativo for esférico, o reflexo dentro da pupila será 
contínuo, sem quebra. Se o erro for astigmático, o reflexo dentro da 
pupila pode não ser contínuo, com quebra. 
Figura 2.14 – Quebra de continuidade em erro refrativo não esférico
Não é um dos 
meridianos principais
Um dos meridianos 
principais
Adaptada de: CARLSON (2015). 
b. Uma vez que a luva for girada em 360º, a largura do reflexo dentro 
da pupila será constante em um erro refrativo esférico e variar em 
um cilíndrico (fenômeno da largura). Como a luva é girada, o brilho 
do reflexo retiniano se manterá constante em um erro esférico e 
pode variar no astigmático. Os meridianos principais correspondem 
às orientações da luva, que mostrará a largura dos reflexos e seu 
brilho. 
Refração objetiva - Retinoscopiaunidade II
60
Figura 2.15 – Erro refrativo esférico 
Erro refrativo esférico: 
Todos os meridianos com a 
mesma espessura
Adaptada de: CARLSON (2015). 
c. Em um erro astigmático, como a faixa é movida por meio da pupila 
do paciente, o reflexo dentro dela se moverá paralelamente ao movi-
mento da faixa na íris do paciente. Isso ocorre quando a faixa estiver 
alinhada em um dos dois meridianos principais. O reflexo se moverá 
em direções diferentes da faixa quando ela não estiver alinhada com 
um dos meridianos principais. 
Figura 2.16 – Diferença de espessura no astigmatismo
Astigmatismo:
A espessura do reflexo varia nos diferentes meridianos.
Adaptada de: CARLSON (2015).
3. Se um erro refrativo for esférico, observe se o reflexo está a favor ou 
contra o movimento e adicione lentes positivas ou negativas para 
neutralização, dependendo do erro do paciente, a posição da luva de 
comando do retinoscópio (se o espelho é plano ou côncavo) e o tipo de 
movimento da faixa. A tabela 2.1 demonstra o tipo de movimento com 
espelho plano, côncavo e o tipo de lente a se adicionar.
Refração objetiva - Retinoscopia unidade II
61
Tabela 2.1 – Lentes e espelhos usados na neutralização do movimento
Erro refrativo
Movimento 
com espelho 
plano
Movimento 
com espelho 
côncavo 
Lentes 
utilizadas para 
neutralização
Emetropia ou 
hipermetropia
A favor Contra Positiva
Baixa miopia Neutralização Neutralização Nenhuma
Miopia maior 
do que a 
distância de 
trabalho
Contra A favor Negativa
Adaptada de: CARLSON (2015). 
4. Para neutralizar um erro astigmático, é necessário que primeiro você 
identifique um dos meridianos principais, como no passo 2. Então, 
neutralize cada um dos meridianos separadamente. Quando utilizar 
um foróptero com lentes cilíndricas negativas, você pode neutralizar um 
meridiano usando as lentes esféricas e o outro em combinação com as 
lentes cilíndricas, lembrando que o esférico deve ser o mais positivo ou 
menos negativo. 
Para um iniciante, pode ser difícil determinar qual meridiano é o 
menos negativo no começo para ser neutralizado primeiro. Os demais 
meridianos podem ser examinados e ajustados apenas usando lentes 
esféricas. 
5. Quando ambos os meridianos estiverem neutralizados, reexamine 
o meridiano neutralizado com esférico e ajuste o poder esférico, se 
necessário.
6. Quando encontrar a neutralidade, reexamine todos os meridianos com 
a luva de comando em ambos os espelhos, plano e côncavo. Se a verda-
deira neutralização ocorreu, todos os meridianos vão parecer neutros 
em qualquer posição do retinoscópio. Caso não consiga, tente nova-
mente até conseguir.
Refração objetiva - Retinoscopiaunidade II
62
7. As lentes, ou combinações de lentes, que produzem a neutralização, 
são chamadas de “retinoscopia bruta”. Repita os passos 2 a 6 no olho 
esquerdo.
8. Converta a retinoscopia bruta em retinoscopia líquida, algebricamente 
descontando a sua distância de trabalho convertida em dioptrias no 
valor esférico de cada olho.
9. Meça a acuidade visual do paciente com cada olho usando a potência 
encontrada na retinoscopia líquida.
Conheça mais:
Você pode achar que a retinoscopia só serve para encontrarmos erros 
refrativos, certo? Felizmente, seu uso não é tão limitado. Ao ler o artigo 
“Retinoscopia a dois metros na detecção de fatores causadores de ambliopia 
em crianças de Curitiba”, disponível em sua midiateca, qual outro uso 
muito importante você consegue estabelecer para a retinoscopia?
Vamos ao AVA!
No AVA,você vai encontrar o “Simulador de retinoscopia” disponibilizado 
pela Alcon, para que treine essa técnica que é uma das principais da 
refração. Acesse lá!
2.5 Retinoscopia dinâmica
Você pode realizar a retinoscopia em visão próxima também. O que isso signi-
fica? Significa que ela é feita com o paciente recebendo um estímulo acomodativo, 
ou seja, utilizando sua acomodação. Dessa forma, se utilizarmos esse critério, a reti-
noscopia para longe recebe o nome de estática, por não utilizar a acomodação. Você 
já conhece as retinoscopias MEM, Nott e Bell, vistas nos testes preliminares, certo? 
Agora vai conhecer outra, voltada à refração.
Refração objetiva - Retinoscopia unidade II
63
2.5.1 Retinoscopia Mohindra
A retinoscopia Mohindra tem como objetivo determinar o erro refrativo do 
paciente usando a luz do retinoscópio como ponto de fixação. Esse método pode ser 
utilizado em adultos, mas é particularmente mais utilizado em crianças e em especial 
crianças muito pequenas.
Para proceder ao teste, você só precisa de lentes e o retinoscópio. Então, você 
deve estar a 50 cm do paciente. Durante esse procedimento, se observa o olho 
direito do sujeito com o seu olho direito, e o esquerdo com o esquerdo. A sala deve 
estar completamente escurecida e o retinoscópio com um nível de luz que permita a 
observação do reflexo sem ofuscar o paciente. Com o resultado final da retinoscopia, 
desconte +1,25D no valor esférico para corrigir o valor da distância. 
Importante!
É importante que você lembre-se de descontar o valor de correção sempre 
que realizar a retinoscopia dinâmica Mohindra. Vamos utilizar o outro 
exemplo para entendermos melhor. Digamos que encontramos um valor 
bruto de +5,50 <> -3,50 x 180º. Realizamos Mohindra, e então ficamos com 
um valor de +4,25 <> -3,50 x 180º.
Na prática!
Então, vamos para um passo a passo de como realizar Mohindra:
1. Oclua o olho esquerdo e examine o olho direito;
2. Se você estiver examinando uma criança, peça para que ela olhe para a 
luz. Se isso não acontecer, estimule a atenção da criança fazendo sons. 
Se estiver examinando uma criança maior ou um adulto, fale para que 
ela olhe diretamente para a luz;
3. Examine e observe quais são os meridianos principais;
4. Usando uma lente de teste (do foróptero, caixa de provas ou régua de 
esquiascopia), identifique o poder no qual neutraliza cada meridiano;
5. Calcule sua retinoscopia bruta, usando o cilindro negativo;
Refração objetiva - Retinoscopiaunidade II
64
6. Desconte o valor de +1,25 esférico do componente esférico do seu 
exame. O resultado esferocilíndrico representa a distância corrigida do 
paciente;
7. Oclua o olho direito do paciente;
8. Repita os passos 2 ao 6 no olho esquerdo;
9. Anote a acuidade visual do paciente utilizando a correção que você 
encontrou.
Aprendemos que:
Nesta segunda unidade, você estudou o que é a retinoscopia, uma impor-
tante ferramenta para refração e detecção de erros refrativos do olho. 
Aprendeu, também, a fazer a retinoscopia estática, com o paciente olhando 
para o infinito; a retinoscopia dinâmica, com o paciente olhando para um 
estímulo próximo, como a luz do instrumento, além de como usar as lentes 
para realizar a tarefa.
Referências da unidade II
ALVES, Milton Ruiz. Refratometria ocular e a arte da prescrição médica. 3. ed. Rio 
de Janeiro: Guanabara-Koogan, 2013.
BENJAMIN, W. Borish’s clinical refraction. 2. ed. Filadelphia: W. B. Saunders, 2006.
CARLSON, Nancy. Clinical Procedures for Ocular Examination. 4. ed. New York: McGraw-
Hill Education, 2015.
FURLAN, W. Fundamentos de Optometria. Refraccion Ocular. 1. ed. Valencia: 
Universidad Valencia, 2009.
MARTIN, Raul; VECILLA, Gerardo. Manual de Optometria. 2. ed. Madrid: Médica 
Panamericana, 2012.
Refração subjetiva unidade III
65
3unidade III
3Refração subjetiva
3.1 Entendendo a refração subjetiva
Nas duas primeiras unidades, você apren
deu como proceder quanto à 
refração objetiva, ou seja, as técnicas uti
lizadas para encontrar o erro refra-
tivo do seu paciente, de forma diagnóstic
a. Agora, vai aprender a neutralizar 
essas ametropias e devolver uma boa vis
ão a ele.
A refração subjetiva consiste em comparar a acuidade visual que uma lente 
proporciona em relação à outra, utilizando como critério de mudança as respostas 
dadas pelo paciente. O nosso objetivo ao realizar a refração subjetiva é determinar 
a melhor combinação de lentes esferocilíndricas que vai proporcionar a melhor 
3Comando 
Tabela
Refração subjetivaunidade III
66
acuidade sem gerar desconforto, em função da qualidade visual, rendimento visual 
com relação ao equilíbrio binocular e acomodativo, levando em consideração sua 
influência sobre o sistema sensorial.
A primeira etapa da refração subjetiva depende do nível de visão que o paciente 
tem ao medirmos sua AV habitual, com ou sem correção prévia. Por isso é impor-
tante que você anote seu valor, para termos um ponto de início. Caso o paciente não 
apresente uma boa AV com sua melhor correção habitual, é necessário que o mesmo 
teste seja feito com o furo estenopeico. 
A refração é feita de modo monocular, ou seja, ocluindo um dos olhos, em um 
ambiente de iluminação que emule o modo em que o paciente utiliza sua visão. Você 
deverá utilizar as diversas técnicas para calcular a melhor correção esférica e cilín-
drica, como o método Donders, o dial-test, cilindros cruzados de Jackson, miopização, 
entre outras. 
Importante!
Você já deve ter feito algum exame de vista ou visto algum, certo? Então 
você via aquela sala escura, com apenas o projetor ou a tabela iluminando 
o ambiente. Atualmente, essa condição só é utilizada quando o dia a dia 
do paciente necessitar desse tipo de técnica ou em casos de dificuldade de 
atenção e concentração. Hoje, emulamos o ambiente para o uso da visão 
da pessoa, de modo a conseguirmos os melhores resultados reais para ela.
Para verificarmos a refração monocular encontrada, podemos 
utilizar também técnicas de refração binocular, como o equilíbrio 
binocular, balanço acomodativo, subjetivo binocular, miopização bino-
cular, entre outras. Todavia, algumas pessoas podem não apresentar 
visão binocular devido a estrabismos, ambliopia ou supressão, o que 
torna a refração subjetiva monocular suficiente. Para testar a presença 
de alguma anomalia de visão binocular, é recomendado o estudo da 
motilidade ocular extrínseca e o sistema sensorial antes da refração 
monocular.
Refração subjetiva unidade III
67
3.1.1 O furo estenopeico e a diminuição da qualidade visual
O furo estenopeico é uma lente fosca com um orifício circular 
central com diâmetro entre 1 e 2 mm. O teste consiste em colocar a lente 
sobre o olho do paciente, de modo a verificar se há ou não melhora da 
acuidade visual do paciente. O furo estenopeico limita a entrada de raios 
na zona para-axial (eixo visual), de modo a aumentar a profundidade de 
foco do sistema óptico e diminuir o embaçamento da imagem retiniana, 
caso for causado por um erro refrativo.
Figura 3.1 – Comparação da entrada da luz no olho sem e com furo estenopeico
Fonte: Martin; Vecilla (2010).
Se uma ametropia tem um valor moderado, o teste do furo estenopeico 
tende a melhorar a acuidade visual do paciente e o valor de AV medido sem o furo. 
Entretanto, se houver algum tipo de alteração orgânica nas estruturas oculares, 
como opacificação de seus meios, problemas retinianos ou das vias visuais, a AV não 
melhorará ou até poderá ser reduzida, devido à diminuição da luz que chega à retina 
e os efeitos de difração.
Refração subjetivaunidade III
68
Você deve estar se perguntando: “por que fazer o teste do furo estenopeico?”. 
A resposta é bem simples. Você deve fazer o teste quando perceber uma AV abaixo 
do normal ou uma diferença entre os dois olhos. Isso pode lhe indicar uma possível 
etiologia do problema, se é refrativo ou não a diminuição da AV. Contudo, o uso do 
furo estenopeico

Continue navegando