Prévia do material em texto
CÁLCULO NUMÉRICO COMPUTACIONAL Universidade Anhembi-morumbi // Engenharia Elétrica. Atividade 4 · Barroso (1987) Usando a regra dos trapézios composta sobre os pontos necessários, calcule e marque a alternativa que representa o valor do trabalho realizado por um gás sendo aquecido segundo a tabela abaixo, em que é a pressão exercida pela gás e é o seu respectivo volume. () 0,5 110 1,0 100 1,5 90 2,0 82 2,5 74 3,0 63 3,5 54 4,0 38 4,5 32 5,0 22 Referência: BARROSO, L. C. et al. Cálculo numérico (com aplicações). 2. ed. São Paulo: Harbra, 1987, p. 274. R: 168,5 J · A velocidade instantânea de uma motocicleta foi medida em vários momentos e registrada numa tabela como segue abaixo: t (segundos) v (km/h) 0 20 120 22 240 23 360 25 480 30 600 31 720 32 840 40 960 45 1080 50 1200 65 Referência: Elaborado pelo autor. Uma vez que o motociclista não anotou a quilometragem da motocicleta e deseja calcular uma aproximação da distância percorrida, em metros, determine essa aproximação usando a regra dos trapézios composta sobre todos os pontos dados na tabela. R: 11350 · Para Barroso (1987) uma linha reta foi traçada de modo a tangenciar as margens de um rio nos pontos A e B. Para medir a área de um trecho entre o rio e a reta AB foram traçadas perpendiculares em relação a AB com um intervalo de 0,06 m. Usando os dados tabelados e a regra dos trapézios simples, calcule uma aproximação para a área da região compreendida entre as perpendiculares 6 e 7. Perpendiculares Comprimento (metros) 1 3,45 2 4,68 3 4,79 4 5,13 5 5,68 6 5,97 7 6,85 8 5,71 9 5,34 10 4,97 11 3,44 Referência: BARROSO, L. C. et al. Cálculo numérico (com aplicações). 2. ed. São Paulo: Harbra, 1987, p. 273. R: 0,38 metros quadrados · Franco (2013) a seção reta de um veleiro está mostrada na Figura abaixo: Fonte: Franco, Neide Maria Bertoldi. Cálculo Numérico. São Paulo: Editora Pearson, 2013, p. 376. A força que o vento exerce sobre o mastro (devido às velas) varia conforme a altura (em metros) a partir do convés. Medidas experimentais constataram que a força resultante exercida sobre o mastro (em ) é dada pela equação: , Usando a regra dos trapézios composta, com 8 trapézios, desconsiderando a fórmula do erro de truncamento, calcule essa força resultante. Referência: Franco, Neide Maria Bertoldi. Cálculo Numérico. São Paulo: Editora Pearson, 2013. R: 1,67 kN · Franco (2013) A seção reta de um veleiro está mostrada na Figura abaixo: Fonte: Franco, Neide Maria Bertoldi. Cálculo Numérico. São Paulo: Editora Pearson, 2013, p. 376. A força que o vento exerce sobre o mastro (devido às velas) varia conforme a altura (em metros) a partir do convés. Medidas experimentais constataram que a força resultante exercida sobre o mastro (em ) é dada pela equação: , Usando a regra dos trapézios composta, com 11 pontos distintos, desconsiderando a fórmula do erro de truncamento, calcule essa força resultante. Referência: Franco, Neide Maria Bertoldi. Cálculo Numérico. São Paulo: Editora Pearson, 2013. R: 1,69 kN · Franco (2013) A determinação da área da seção reta de rios e lagos é importante em projetos de prevenção de enchentes (para o cálculo de vazão da água) e nos projetos de reservatórios (para o cálculo do volume total de água). A menos que dispositivos tipo sonar sejam usados na obtenção do perfil do fundo de rios/lagos, o engenheiro deve trabalhar com valores da profundidade, obtidos em pontos discretos da superfície. Um exemplo típico da seção reta de um rio é mostrado na Figura abaixo: Referência: Franco, Neide Maria Bertoldi. Cálculo Numérico. São Paulo: Editora Pearson, 2013, p. 371. Use a fórmula dos trapézios composta sobre os respectivos pontos igualmente espaçados para calcular a área da região da seção reta do rio compreendida entre 10 e 20 metros de distância da margem esquerda desse rio., R: 33,6 metros quadrados · Suponha que um motorista realizou a leitura da velocidade instantânea de um veículo em alguns momentos específicos e registrou esses dados como na tabela abaixo: Fonte: Elaborada pelo autor. Como o motorista esqueceu de anotar a quilometragem do veículo e deseja saber uma aproximação da distância percorrida, calcule essa aproximação a partir da regra dos trapézios composta sobre todos os pontos dados na tabela. R: 33,75 km · Sabendo-se que a quantidade de calor necessária para elevar a temperatura de um certo corpo de massa de a é em que é o calor específico do corpo à temperatura . Considerando a tabela abaixo, calcule a quantidade de calor necessária para se elevar 15 kg de água de 20 °C a 80 °C. (°C) () 0 999,8 10 999,6 20 998,1 30 995,4 40 992,3 50 988,2 60 983,2 70 977,7 80 971,5 90 965,6 100 958,9 Referência: BARROSO, L. C. et al. Cálculo numérico (com aplicações). 2. ed. São Paulo: Harbra, 1987, p. 272. R: 888240 kcal · Barroso (1987) Usando a regra dos trapézios simples sobre os pontos necessários, calcule e marque a alternativa que representa o valor do trabalho realizado por um gás sendo aquecido segundo a tabela abaixo, em que é a pressão exercida pela gás e é o seu respectivo volume. () 0,5 110 1,0 100 1,5 90 2,0 82 2,5 74 3,0 63 3,5 54 4,0 38 4,5 32 5,0 22 Referência: BARROSO, L. C. et al. Cálculo numérico (com aplicações). 2. ed. São Paulo: Harbra, 1987, p. 274. R: 34,25 J · (Franco, 2013, adaptado) Sem utilizar a fórmula do erro de truncamento, aproxime pela regra dos trapézios composta, com 5 pontos distintos, o comprimento de arco da curva de a . Lembre-se que o comprimento de arco de uma curva genérica do ponto ao ponto é dada por Referência: Franco, Neide Maria Bertoldi. Cálculo Numérico. São Paulo: Editora Pearson, 2013, p. 366. R: 2,99