Buscar

Aula _ Introdução à Integração

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 5 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Aula 6 – INTRODUÇÃO À INTEGRAÇÃO
A integral indefinida
Definição: Uma função F(x) é chamada uma primitiva da função f(x) em um intervalo I, se para todo x Є I, tenos F`(x)= f(x).
Observamos que, de acordo com nossa definição, as primitivas de uma função f(x) estão sempre definidas sobre algum intervalo. Quando não explicitamos o intervalo e nos referimos a duas primitivas da mesma função f, entendemos que essas funções são primitivas de f no mesmo intervalo I.
Exemplos 1: F(x)= 1/3 x³ é uma primitiva da função f(x) = x², pois F´(x) = x²
2) As funções G(x) = x³/3 + 4 e H(x) = 1/3(x³ +3) também são primitivas da função f(x) = x², pois G´(x) = H´(x) = f(x).
3) A função F(x) = 1/2 sen 2x +c, onde c é ums constante, é primitiva da função f(x)= cos 2x.
Os exemplos mostram que as funções admitem mais de uma primitiva.
Proposição 1: Seja F(x) uma primitiva da função f(x). Então se c é uma constante qualquer, a função G(x) = F(x) + c também é primitiva de f(x)
Proposição 2: Se f´(x) se anula em todos os pontos de um intervalo I, então f é constante em I.
Proposição 3: Se F(x) e G(x) são funções primitivas de f(x) no internalo I, então existe uma constante c tal que F(x) – G(x) = c para todo x Є I
Dessa proposiçaõ, concluímos que se F(x) é uma particular primitiva de f, então toda primitiva de f é da forma
G(x) = F(x) + c
DEFINIÇÃO: SE F(X) É UMA PRIMITIVA DE f(x), A EXPRESSÃO F(X) + C É CHAMADA INTEGRAL INDEFINIDA DA FUNÇÃO F(X) E É DENOTADO POR:
∫ f(x)dx = F(x) + c.
O símbolo ∫ é chamado sinal de integração, f(x) função integrando e f(x)dx integrando.
Propriedades da integral indefinida:
∫ k f(x)dx = k ∫ f(x)dx
∫ (f(x) + g(x)) dx = ∫ f(x)dx + ∫ g(x)dx
Exemplos: a) ∫ x²dx
Solução: x2+1/2+1 = x³/3 , logo 
∫ x²dx = x³/3 + c
b) ∫ dx
Solução: ∫ 1dx = x + c
c) ∫ (3x² + 5)dx
Solução: ∫ (3x² + 5)dx = ∫ 3x²dx + ∫ 5dx
= 3 ∫ x²dx + 5 ∫ dx 
= 3 x²+1/ 2+1 + 5x + c =
 = 3 x3/ 3 + 5x + c
d)
= 2/ x1/3dx=
∫2. x-1/3dx=
2 ∫ x-1/3dx =
2. x-1/3+1/-1/3 +1 + c =
2. x 2/3/ 2/3 + c=
2.(3/2). x2/3 + c
3. 3√x² + c
e)
=
∫( 2x-3 + 3x-2 + 5) dx = 
∫2x-3 dx + ∫3x-2 dx + ∫5 dx =
2. x-3+1 /-3+1 + 3. x-2+1 /-2+1 + 5 + c = 
2. x-2 /-2 + 3. x-1 /-1 + 5x + c =
- x-2 - 3. x-1 + 5x + c
Dica: Para verificar se uma primitiva foi calculada corretamente, determine a derivada da solução
F(x) + C. Se essa derivada for igual a f(x), então a primitiva está correta; se for diferente, existe algum erro nos cálculos
Exercícios: Calcule as integrais indefinidas
a)
b) ∫ (x5+ 1/ x³ +4)dx
c) 
d)
e) ∫ 2/√x dx
Técnicas de integração de funções trigonométricas
Exemplos: 
∫ cosx dx = sen x + c
∫ senx dx = - cosx + c
∫ sec²x dx = tg x + c
∫ cosec² x dx = - cotgx +c
∫ secx . tg x = secx + c
∫ cosecx . cotgx dx = - cosecx + c
∫ dx/√1-u² = arc senx + c
∫ dx/ 1+x² = arc tg u + c
Exercícios:
∫ (3secx. tgx + cosec²x)dx = 3 ∫ secx.tgx dx + ∫ cosec²xdx
= 3secx – cotgx + c
∫ (-cosx)dx = 
∫ senx dx = 
∫ sec²xdx = 
Método da substituição ou mudança de variável para integração:
Esse processo é análogo á regra da cadeia para derivação e pode ser justificado como segue:
Sejam f(x) e F(x) duas funções tais que F´(x) = f(x). Suponhamos que g seja outra função derivável tal que a imagem de g esteja contida no domínio de F. Podemos considerar a função composta Fog.
Pela regra da cadeia, temos:
[F(g(x))]´= F´(g(x)). g´(x) = f(g(x)). g´(x), isto é, F(g(x)) é uma primitiva de f(g(x)).g´(x)
Temos, então:
∫f(g(x)). g`(x) dx = F (g(x)) + c
Fazendo-se u = g(x), du = g´(x)dx e substituindo-se em na equação, temos:
∫f(g(x)). g`(x) dx
∫f(u).du = F(u) + c
Exemplos:
Calcule as integrais indefinidas:
∫ sen²x cosx dx = 
Fazemos u = senx, du = cosxdx. Assim:
∫u²du = u2+1/2+1 = u³/3 + c
(Substituindo) = sen³x/3 + c
∫sen (x+7) dx
Fazemos u = x+7, temos du=dx. Então,
∫sen u du
= -cos u +c
= - cos (x+7) + c
Exercícios: 
∫cos (x+9) dx
∫ cos²x cosx dx
c)∫ dx/ (3x -5)8
d)
�PAGE �
�PAGE �5�
_1028460763.unknown
_1378081847.unknown
_1378081939.unknown
_1378082960.unknown
_1028460802.unknown
_1028460648.unknown
_1028460721.unknown
_1028460438.unknown

Continue navegando