Logo Passei Direto
Buscar

Cálculo

Outros
Saber calcular o valor de uma derivada é fundamental para o estudo de cálculo integral, já que este valor possui um significado prático para análise da curva do gráfico de uma determinada função que indica uma taxa de variação instantânea. Isso pode significar encontrar uma taxa de variação referente a outra função ou algo similar, o que implica na possibilidade de se aplicar a operação reversa à derivada. Considerando essas informações e o conteúdo estudado sobre integral indefinida, pode-se afirmar que aplicar a operação inversa à derivada é relevante porque:
permite determinar a função primitiva de uma derivada, ou seja, a função que a gerou.
tem uma interpretação geométrica diferente da derivada.
elimina indeterminações em que a regra de L’Hospital falha.
vale para qualquer tipo de função e intervalo.
passa a ser possível derivar outros tipos de funções.
User badge image
Desafios para Aprender

há 7 meses

Respostas

User badge image

Ed Verified user icon

há 7 meses

Aplicar a operação inversa à derivada, que é a integral, é relevante porque: Permite determinar a função primitiva de uma derivada, ou seja, a função que a gerou. Isso significa que, ao calcular a integral de uma função, você está encontrando uma função cuja derivada é a função original. Essa relação é fundamental no cálculo, pois conecta as operações de derivação e integração.

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

A Regra de L’Hospital contribui para a solução de algumas categorias de indeterminações. Com essa regra tenta-se resolver o que não é solucionável apenas com a aplicação de um limite. Ela pode ser aplicada, também, inúmeras vezes, caso as indeterminações se mantenham, até o momento em que cessam.
Considerando essas informações e com base em seus conhecimentos sobre a regra de L’Hospital, analise as afirmativas a seguir e assinale V para a(s) verdadeira(s) e F para a(s) falsa(s):
I. ( ) Indeterminações do tipo 1/0 podem ser resolvidas por essa regra.
II. ( ) Em determinações do tipo 0/0, pode-se utilizar a regra de L’Hospital.
III. ( ) Em determinações do tipo infinito/infinito, pode-se utilizar a regra de L’Hospital.
IV. ( ) A sua aplicação envolve um processo de integralização.
F, V, V, F.
V, V, F, V.
F, F, F, V.
F, F, V, V.
V, V, V, F.

O estudo do cálculo diferencial e integral é repleto de interpretações geométricas acerca das curvas de funções. A inclinação da reta tangente à curva é definida pela derivada da função, e a integral da função mensura a área abaixo da curva que a descreve.
Considerando as funções f(x) = 2x + 2, g(x) = x²−2x+1, h(x) = sen(x), e com base nos seus conhecimentos acerca de funções e interpretação geométrica dos conceitos estudados em cálculo diferencial e integral, analise as afirmativas a seguir e assinale V para a(s) verdadeira(s) e F para a(s) falsa(s).
I. ( ) A inclinação da reta tangente à curva do gráfico de f(x) em qualquer ponto é igual a 2.
II. ( ) A integral de g(x) no intervalo de 0 a 2 equivale à área definida pelo eixo Ox, pelas retas y = 0, y = 2 e pelo gráfico de g(x).
III. ( ) h(x) é uma função.
IV. ( ) Adotando z(x) = g(x) + h(x), z(x), ainda seria integrável.
V, F, V, V.
V, V, F, F.
F, F, V, V.
V, F, V, F.
V, V, V, F.

De acordo com Teorema Fundamental do Cálculo, sabemos que a integral e a derivada são operações contrárias. As integrais indefinidas são extremamente importantes para a determinação da função primitiva F(x), que é obtida realizando a integração da função de interesse f(x), sendo que, da mesma forma, derivando-se a primitiva F(x), obtemos novamente a f(x).
Considerando essas informações e o conteúdo estudado acerca de integrais definidas, analise as afirmativas a seguir.
I. A propriedade define uma regra para integração de polinômios.
II. As integrais indefinidas podem delimitar várias famílias de respostas para o problema de função primitiva.
III. Uma integral indefinida é delimitada a partir de uma função primitiva.
IV. é um exemplo de integral definida.
II, III e IV.
II e III.
I, II e III.
I e IV.
I, III e IV.

O estudo das derivadas permitiu a compreensão de como se dá a inclinação de uma reta tangente a uma curva em um determinado ponto e qual a taxa de variação instantânea referente a ele. Somado a isso, em algumas situações é preferível que, ao se saber a derivada de uma função desconhecida, realize-se a operação inversa a ela, para se descobrir a função que a gerou, chamada função primitiva ou antiderivada.
Considerando essas informações e tendo em vista o conteúdo estudado sobre integrais indefinidas e antiderivadas, analise as afirmativas a seguir.
I. Se uma função F’(x) = f(x), diz-se que F(x) é uma antiderivada de f(x).
II. Tomando determinada função, pressupõe-se que esta função tem uma antiderivada.
III. é uma representação notacional de uma integral indefinida.
IV. é uma propriedade de uma integral definida.
I, III e IV.
II e III.
I e IV.
II, III e IV.
I e III.

Intuitivamente, ao imaginar uma divisão por um número muito pequeno, podemos constatar que, quanto menor o denominador, maior o resultado dessa divisão, pois menor seria o número de parcelas dessa divisão. No Ensino Superior, nas disciplinas de Cálculo, estudamos isso através dos limites, onde aproximamos nossas funções para um ponto em que x tende a algum valor (nesse caso, a zero). No entanto, algumas funções apresentam indeterminações ao realizar o cálculo do limite, e para fugir dessas indeterminações adotamos a regra de L’Hospital, que utiliza a derivada das funções para o cálculo do limite desconhecido.
Considerando essas informações e seus conhecimentos sobre derivadas e a regra de L’Hospital, analise as afirmativas a seguir:
I. O limite de x/e^x, com x tendendo a zero, é igual a 1.
II. O limite de (x+sen(x))/(x²-sen(x)), com x tendendo a zero, é igual a −2.
III. O limite e^(x)/x², quando x tende a mais infinito, é igual a mais infinito.
IV. A regra de L’Hospital é aplicável somente nos casos em que existe uma indeterminação, não podendo ser aplicada a qualquer caso, pois poderia gerar respostas incorretas.
I, II, III e IV.
I, II, III.
III e IV.
II, e IV.
II, III e IV.

O estudo do cálculo é importante em diversas áreas do conhecimento. Por exemplo, em física, é utilizado para descrever as equações horárias de movimento, que são funções polinomiais. Essas funções polinomiais podem ser integradas e derivadas conforme o estudo de cálculo integral para, a partir daí, obter outros conhecimentos.
Considere que a integral da equação horária da aceleração a(t) é igual à equação horária da velocidade v(t), e a integral desta é igual à equação horária do movimento S(t). Considerando essas informações e o conteúdo estudado sobre derivação, analise as afirmativas a seguir.
I. Em movimentos em que a(t) é uma função constante e não nula, S(t) é uma função do primeiro grau.
II. Para a função horária S(t) = cos(x), a aceleração a(t) também é a(t) = cos(x).
III. Se a velocidade de um corpo é de 4 m/s e constante, pode-se afirmar que S(t) é uma função do primeiro grau.
IV. Dada a equação horária da posição S(t) = x² + 2x − 3, tem-se que v(2) = 6m/s e que a aceleração é constante e vale 2m/s².
I, II e IV.
II, III.
III e IV.
I, II, III.
II e IV.

No estudo de funções compostas, percebemos que é possível a imagem de uma função ser o domínio de outra, e a notação que temos para descrever esse tipo de funções é H(x) = f(g(x)). Vimos ao longo do curso que existe uma regra para derivar esse tipo de função, chamada regra da cadeia, em que derivamos f(g(x)), considerando o argumento g(x) constante, e multiplicamos pela derivada de g(x), isto é, H’(x) = f’(g(x))*g’(x).
Dadas as funções f(x) = sen(5x+2) e g(x) = 3cos(2x+5) e utilizando seus conhecimentos sobre derivadas de funções circulares, analise as afirmativas a seguir:
I. A derivada de g(x) é igual a 6sen(2x+5).
II. A função H(x) = z(w(x)), onde z(x) = sen(x) e w(x) = cos(2x), tem derivada H’(x) = −sen(2x)*cos(cos(2x)).
III. A derivada de f(x) é igual a 5sen(5x+2)*cos(x).
IV. A derivada de f(f(x)) é igual a −6sen(2x)*cos(3cos(2x) + 5).
I e IV.
II e IV.
II, III e IV.
II e III.
I e III.

Mais conteúdos dessa disciplina