Buscar

Métodos químicos e físico-químicos para análises de alimentos-cap5

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 118 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 118 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 118 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

IAL - 161
ADITIVOS
VCAPÍTULO
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
162 - IAL
IAL - 163
VADITIVOS
C
om o desenvolvimento tecnológico, é grande e variado o número de substâncias 
químicas empregadas no decorrer de todo o processo de produção de alimentos. 
Dentre estas substâncias, destacam-se os aditivos, que podem apresentar grandes 
vantagens para melhorar os alimentos do ponto de vista tecnológico, desde que 
seu uso seja seguro. Para isto, é necessário verificar se obedecem às normas de identidade e 
pureza estabelecidas pela FAO/OMS ou pelo Food Chemicals Codex, exigidos pela legislação 
brasileira, sendo portanto este controle feito antes da adição ao alimento.
Toda a legislação a respeito de aditivos é positiva e dinâmica, isto é, são agrupadas em 
listas as substâncias cujo uso é permitido, os alimentos em que podem ser usadas e os limites 
máximos no produto final, sendo estas listas revisadas e acrescidas com novas substâncias 
sempre que necessário. 
A partir de 1997, houve muitas alterações na legislação de aditivos alimentares, a fim 
de compatibilizar a legislação nacional com o estabelecido nas resoluções harmonizadas no 
Mercosul, a começar com a Portaria no 540 da SVS/MS de 27/10/1997, que aprova o regu-
lamento técnico de aditivos alimentares e os define como “qualquer ingrediente adicionado 
intencionalmente aos alimentos, sem propósito de nutrir, com o objetivo de modificar as 
características físicas, químicas, biológicas ou sensoriais durante a fabricação, processamen-
to, preparação, tratamento, embalagem, acondicionamento, armazenagem, transporte ou 
manipulação de um alimento. Ao agregar-se, poderá resultar que o próprio aditivo ou seus 
derivados se convertam em um componente de tal alimento. Esta definição não inclui os 
contaminantes ou substâncias nutritivas que sejam incorporadas ao alimento para manter 
ou melhorar suas propriedades nutricionais.” Esta Portaria também altera a classificação dos 
aditivos alimentares, aumentando de 11 para 23 classes funcionais. 
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
164 - IAL
A seguir, são comentadas algumas classes de aditivos, cujas definições foram extraídas 
da Portaria n° 540/97.
Acidulantes/Reguladores de acidez
Substâncias que aumentam a acidez ou conferem um sabor ácido aos alimentos, 
dentre estas são de maior emprego os ácidos orgânicos, tais como: o ácido cítrico, tartárico, 
láctico, fumárico e málico; além do ácido fosfórico, que é inorgânico. Estes ácidos também 
podem ser utilizados como reguladores de acidez, substâncias que alteram ou controlam a 
acidez ou a alcalinidade dos alimentos.
Antioxidantes
Substâncias que retardam o aparecimento de alterações oxidativas nos alimentos. 
Geralmente são utilizados os galatos (propila, octila ou duodecila), ácido ascórbico e seus 
isômeros, butil-hidroxianisol (BHA) e butil-hidroxitolueno (BHT), isoladamente ou em 
mistura, pois apresentam melhores resultados quando juntos (efeito sinérgico). 
Aromatizantes
Substâncias o u mistura de substâncias com propriedades aromáticas e/ou sápidas, 
capazes de conferir ou reforçar o aroma e/ou sabor dos alimentos. Segundo a Resolução 
RDC n° 2 da ANVISA, de 15 de janeiro de 2007, os aromatizantes apresentam duas clas-
sificações: aromas naturais e sintéticos. As misturas de aromas, os aromas de reação ou de 
transformação e os de fumaça poderão ser considerados naturais ou sintéticos, de acordo 
com a natureza de suas matérias-primas ou processos de elaboração. Eles podem ser comer-
cializados na forma sólida (pós, granulados ou tabletes), líquida (soluções ou emulsões) ou 
pastosa. No caso dos aromas em pó, além dos ensaios descritos neste capítulo, determinam-
se os resíduos mineral fixo e o insolúvel em HCl (1+9), para se verificar a presença do dió-
xido de silício (anti-umectante). 
Conservadores
Antigamente, os alimentos eram conservados com ácidos, sal, açúcar e fumaça de 
madeira. Nos dias de hoje, é grande o número de conservadores químicos empregados em 
alimentos. Tais aditivos impedem ou retardam as alterações dos alimentos provocadas por 
microorganismos ou enzimas. Entre os de maior emprego estão: dióxido de enxofre, ácido 
benzóico, ácido sórbico, ácido propiônico, na forma livre, ou de sais de sódio ou potássio e 
nitritos e nitratos de sódio e de potássio.
IAL - 165
Corantes
Substâncias que conferem, intensificam ou restauram a cor de um alimento. Os co-
rantes artificiais são substâncias orgânicas de síntese cuja estrutura molecular difere dos 
corantes encontrados na natureza. São produtos cuja capacidade de conferir grande intensi-
dade de cor e estabilidade supera a dos corantes naturais. Em 1999, foram introduzidos na 
legislação brasileira os seguintes corantes artificiais: azul patente, verde sólido e azorrubina, 
que passam a fazer parte deste capítulo. Apesar das dificuldades encontradas na aplicação 
dos corantes naturais nos alimentos, devido ao seu baixo poder tintorial, alto custo e instabi-
lidade, atualmente seu emprego vem crescendo de forma significativa no ramo alimentício, 
pela preocupação dos consumidores com o uso de substâncias artificiais em alimentos. 
Edulcorantes
Substâncias diferentes dos açúcares que conferem sabor doce aos alimentos. Seu 
emprego justifica-se nos produtos destinados a consumidores que necessitam de restrição 
calórica em suas dietas, bem como para aqueles portadores de diabetes. Atualmente, a técni-
ca mais utilizada para separação, identificação e quantificação dos edulcorantes é a cromato-
grafia líquida de alta eficiência. Os edulcorantes mais empregados hoje em dia são: sacarina, 
ciclamato, aspartame, acesulfame-K e esteviosídio.
Gomas: são polissacarídios de alto peso molecular e, desde que atendam aos pa-
drões de identidade e pureza exigidos para uso em alimentos, são consideradas GRAS pelo 
FDA. Devido à sua afinidade pela água, desempenham papel importante na maioria dos 
alimentos, sendo de amplo uso na indústria, como espessantes, geleificantes, estabilizantes 
e emulsificantes.
Espessantes
Substâncias que aumentam a viscosidade dos alimentos. Eles são usados para contro-
lar a consistência de alimentos líquidos e semilíquidos.
Geleificantes
Substâncias que conferem textura pela formação de um gel.
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
166 - IAL
Estabilizantes
Substâncias que tornam possível a manutenção de uma dispersão uniforme de duas 
ou mais substâncias imiscíveis em um alimento.
Emulsificantes
Substâncias que propiciam a formação ou manutenção de uma mistura uniforme de 
duas ou mais fases imiscíveis no alimento. Estes podem ser naturais ou sintéticos. 
Neste capítulo, são destacados alguns acidulantes, reguladores de acidez, antioxidan-
tes, aromatizantes, conservadores, corantes naturais e artificiais, edulcorantes, espessantes, 
geleificantes, estabilizantes, emulsionantes; além dos bromatos, cujo uso não é permitido 
na legislação brasileira, da determinação de teobromina e cafeína em produtos a base de 
cacau e dos contaminantes arsênio, fluoreto e benzo(a)pireno, um hidrocarboneto policí-
clico aromático (HPA), formado principalmente em processos de combustão incompleta 
de matérias orgânicas, que se encontra na natureza como contaminante de solo, ar, água e 
alimentos. 
Como atualmente são permitidos, no Brasil, mais de 300 aditivos, é descrita, a se-
guir, a análise apenas dos aditivos, puros ou presentes em uma formulação, mais utilizados 
nos alimentos. Os métodos podem sofrer algumas alterações em função da formulação do 
produto. 
A determinação dos aditivos nos alimentos é tratada nos respectivos capítulos deste 
livro. 
058/IV Acidulantes– Identificação de ácido cítrico, láctico e tartárico por cromato-
grafia em papel.
Os ácidos orgânicos podem ser identificados por cromatografia em papel. Na análise 
dos ácidos orgânicos, este método permite identificar, simultaneamente, a presença dos 
ácidos cítrico, tartárico e láctico em amostras de aditivos alimentares.
Material
Balança analítica, papel Whatman nº 1 (20 x 20) cm, balão volumétrico de 100 mL, bé-
quer de 100 mL, cuba cromatográfica com tampa, frasco Erlenmeyer de 300 mL, provetas 
de 50 e 100 mL e seringas de 5 μL.
IAL - 167
 Reagentes
Hidróxido de amônio 
Álcool
Azul de timol 
Ácido clorídrico
Soluções-padrão – Pese 1 g de ácido cítrico, transfira para um balão volumétrico de 100 
mL e complete o volume com água. Repita o mesmo procedimento para os ácidos tartárico 
e láctico.
Solvente para a fase móvel com revelador – Misture 35 mL de álcool, 13 mL de água e 
2 mL de hidróxido de amônio e adicione 50 mg de azul de timol. Se necessário, prepare 
um volume maior mantendo as mesmas proporções. Guarde em frasco de vidro com tampa.
Procedimento – Em um béquer de 100 mL, dissolva a amostra com pouca água. Aplique, 
em pontos eqüidistantes e a 2 cm da borda inferior no papel de cromatografia, 5 μL da 
solução-teste e 5 μL de cada uma das soluções-padrão. Desenvolva o cromatograma, em 
cuba saturada com a fase móvel contendo revelador, até a frente do solvente atingir dois 
centímetros antes da borda superior do papel. As manchas amarelas sob o fundo azul do 
papel indicam a presença dos ácidos. Colocando o papel em atmosfera de vapores de ácido 
clorídrico, o fundo azul do papel torna-se vermelho. Marque, imediatamente, o contorno 
das manchas com lápis. A identificação deve ser feita por comparação dos Rf das manchas 
obtidas com os das soluções-padrão.
Referência bibliográfica
INSTITUTO ADOLFO LUTZ Normas Analíticas do Instituto Adolfo Lutz. v. 1: Métodos 
químicos e físicos para análise de alimentos, 3. ed. São Paulo: IMESP, 1985. p. 78-79.
059/IV Acidulantes – Identificação de ácido cítrico
Este ensaio permite a identificação do ácido cítrico puro e baseia-se numa reação 
colorida com piridina e anidrido acético.
Material
Béqueres de 5 e 25 mL, pipetas graduadas de 1, 5 e 20 mL e bastão de vidro.
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
168 - IAL
Reagentes
Piridina 
Anidrido acético 
Procedimento – Dissolva alguns mg de ácido cítrico em 1 mL de água, transfira para um 
béquer contendo 15 mL de piridina e agite. Acrescente 5 mL de anidrido acético e agite 
novamente. A solução deve ficar avermelhada.
Referência bibliográfica
COMMITTEE ON FOOD CHEMICALS CODEX.Food Chemicals Codex. 4. ed. 
Washington D. C.: National Academic Press, 1996. p. 753.
060/IV Acidulantes – Quantificação de ácido cítrico
Material
Balança analítica, frascos Erlenmeyer de 125 mL, proveta graduada de 50 mL e bureta de 
50 mL.
Reagentes
Solução aquosa de hidróxido de sódio 1 M
Solução de fenolftaleína 1% m/v – Pese 1 g de fenolftaleína, transfira para um balão 
volumétrico de 100 mL e complete o volume com álcool.
Procedimento – Pese, com precisão, cerca de 3 g da amostra e dissolva em 40 mL de água. 
Adicione algumas gotas de solução de fenolftaleína e titule com NaOH 1 M.
Cálculo
Cada mL de NaOH 1M é equivalente a 64,04 mg de C6H8O7.
Referência bibliográfica
COMMITTEE ON FOOD CHEMICALS CODEX. Food Chemicals Codex. 4. ed. 
Washington D. C.: National Academic Press, 1996. p. 102 e 753.
IAL - 169
061/IV Antioxidantes – Titulação de ácido ascórbico e isômeros com solução de iodo
O ácido ascórbico pode ser adicionado aos alimentos com a função de antioxidante 
ou melhorador de farinha. Também é empregado nos sais de cura para reduzir a possibi-
lidade de formação de N-nitrosaminas, pela ação bloqueadora na reação de nitrosação de 
nitrito. Este método é aplicado para misturas de aditivos, desde que não contenham nitrito 
ou outras substâncias redutoras, pois reagem com o iodo.
 
 Ácido ascórbico Ácido dehidroascórbico
Material
Balança analítica, béquer de 100 mL, balão volumétrico de 100 mL, proveta de 25 mL, 
bureta de 25 mL e frasco Erlenmeyer de 250 mL.
Reagentes
Solução de ácido sulfúrico M
Solução de iodo 0,05 M 
Solução de amido a 1% m/v 
Procedimento – Pese uma quantidade de amostra que contenha aproximadamente 0,2 g 
de ácido ascórbico e dissolva em uma solução de 100 mL de água, recentemente fervida e 
resfriada, e adicione 25 mL de ácido sulfúrico M. Titule a solução imediatamente com iodo 
0,05 M, adicionando amido a 1% próximo ao ponto final da titulação. 
2
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
170 - IAL
Cálculo
V = volume de I2 0,1 M gasto na titulação
f = fator da solução de I2 0,1 M
P = massa da amostra em g
Nota: cada mL de iodo 0,1 M é equivalente a 8,806 mg de ácido ascórbico ou ácido eritórbico 
(C6H8O6), 9,905 mg de ascorbato de sódio (C6H7NaO6) e 10,81 mg de eritorbato de sódio 
monohidratado (C6H7NaO6.H2O).
Referência bibliográfica
COMMITTEE ON FOOD CHEMICALS CODEX. Food Chemicals Codex. 4. ed. 
Washington, D.C.: National Academy Press, 1996. p. 33,34,134,354 e 362. 
062/IV Antioxidantes – Determinação de ácido ascórbico e isômeros pelo método de 
Tillman’s
Este método, aplicado para misturas de aditivos que apresentem baixa concentração 
de ácido ascórbico e não contenham nitrito em sua formulação, fundamenta-se na redução 
de 2,6-diclorofenol indofenol por uma solução de ácido ascórbico.
IAL - 171
Procedimento – Siga a determinação conforme método 365/IV.
063/IV Antioxidantes – Titulação de ácido ascórbico e isômeros com solução de iodo 
na presença de polisorbato 80
O polisorbato 80, componente comum nos produtos para panificação, interfere na 
determinação do teor de ácido ascórbico pelo método de iodimetria. Assim, quando ambos 
estiverem presentes, é necessário fazer a extração do polisorbato antes da determinação do 
ácido ascórbico. Pode-se também dosá-lo diretamente por técnica polarográfica, sem neces-
sidade de extração.
Material
Balança analítica, balança semi-analítica, béquer de 100 mL, provetas de 25 e 50 mL, 
funil de separação tipo pêra de 250 mL, funil e papel de filtro, bureta de 10 mL e frasco 
Erlenmeyer de 250 mL.
Reagentes
Solução aquosa de iodo 0,05 M
Cloreto de sódio 
Butanol 
Solução aquosa de HCl 3 M saturada com NaCl – Adicione NaCl sólido à solução HCl 3 M 
até haver precipitação, ou, alternativamente, dilua 1:1 uma solução de HCl 6 M com solu-
ção aquosa saturada de NaCl.
Procedimento – Pese, com precisão, uma quantidade de amostra que contenha aproxima-
damente 50 mg de ácido ascórbico. Adicione 2 g de cloreto de sódio e dissolva a mistura 
em 50 mL de água com agitação. Filtre, se necessário. Transfira o filtrado para um funil de 
separação. Adicione ao funil 25 mL de HCl 3 M, saturado com NaCl, e 25 mL de butanol. 
Agite a mistura por 2 minutos, deixe separar as fases, e recolha a camada aquosa inferior, 
filtrando-a para o frasco Erlenmeyer. Titule com iodo usando amido a 1% como indicador. 
Cada mL de iodo 0,05 M equivale a 8,806 mg de ácido ascórbico ou de ácido eritórbico, 
9,905 mg de ascorbato de sódio e 10,81 mg de eritorbato de sódio monohidratado.
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
172 - IAL
Cálculos
V = mL de iodo 0,2 M gasto na titulação
f = fator da solução de iodo 0,2 M
P = massa da amostra em g
Referência bibliográfica
DESSOUKY, Y. M.; HUSSEIN, F. T.; ISMAEL S. A. Determination of ascorbic acid in 
the presence of polysorbate 80 Pharmazie, v.28 (11-12), p. 791-792.1973.
064/IV Antioxidantes – Identificação de ácido ascórbico por redução da solução de 
Fehling
Este método é aplicado para a identificação de ácido ascórbico, ácido eritórbico, 
ascorbato de sódio e eritorbato de sódio em amostras puras ou em misturas de aditivos que 
não apresentem outras substâncias redutoras.
Material
Balança analítica, banho-maria, tubo de ensaio, béquer de 10 mL e balão volumétrico de 
50 mL.
Reagente
Soluções tituladas A e B de Fehling (Apêndice I)
Procedimento – Pese uma quantidade de amostra de maneira que a concentração final 
de ácido ascórbico esteja em torno de 2%. Transfira para um balão volumétrico de 100 
mL e complete o volume com água. Filtre se necessário. Adicione a solução de Fehling. 
IAL - 173
Na presença de ácido ascórbico, o tartarato cúprico alcalino é reduzido lentamente a 25°C, 
porém mais rapidamente sob aquecimento.
Referências bibliográficas
COMMITTEE ON FOOD CHEMICALS CODEX Food Chemicals Codex. 4. ed. 
Washington D. C.: National Academic Press. 1996. p. 34.
FARMACOPÉIA BRASILEIRA, 3. ed. São Paulo: Organização Andrei Editora S.A., 1977. 
p. 83.
065/IV Antioxidantes – Identificação de ácido ascórbico por redução da solução de 
Tillmans 
Material
Balança analítica, balão volumétrico de 100 mL, tubo de ensaio, béquer de 10 mL e pipetas 
de 1 e 2 mL.
Reagente
Solução de Tillmans descrita no método 365/IV.
Procedimento – Pese uma quantidade de amostra de maneira que a concentração final de 
ácido ascórbico esteja em torno de 1%. Transfira para um balão volumétrico de 100 mL e 
complete o volume com água. Filtre se necessário. Pipete 2 mL desta solução no tubo de 
ensaio e adicione 1 mL da solução de Tillmans, que deverá descorar-se imediatamente.
Referências bibliográficas
INSTITUTO ADOLFO LUTZ Normas Analíticas do Instituto Adolfo Lutz. v. 1: 
Métodos Químicos e Físicos para Análises de Alimentos. 3. ed. São Paulo: IMESP, 1985. p. 
394-395.
ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS. Official Methods of 
Analysis of the Association of Official Analytical Chemists. 15th, Arlington: A.O.A.C., 
1990, chapter 45, p. 1058-1059.
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
174 - IAL
066/IV Antioxidantes – Identificação de ácido ascórbico pela reação com bicarbonato 
de sódio e sulfato ferroso
Material 
Balança analítica, balões volumétricos de 100 e 1000 mL, proveta de 100 mL, tubo de 
ensaio, béqueres de 10 mL e pipetas graduadas de 5 mL.
Reagentes
Ácido sulfúrico 
Bicarbonato de sódio 
Sulfato ferroso 
Solução aquosa de ácido sulfúrico a 10% v/v
Procedimento – Pese uma quantidade de amostra de maneira que a concentração final de 
ácido ascórbico esteja em torno de 1%. Transfira para um balão volumétrico de 100 mL e 
complete o volume com água. Filtre se necessário. Pipete 4 mL desta solução em um tubo 
de ensaio. Adicione 0,1 g de bicarbonato de sódio e cerca de 0,02 g de sulfato ferroso. Agite 
e deixe repousar. A solução deverá produzir coloração violeta-escura que desaparece após a 
adição de 5 mL de ácido sulfúrico a 10%.
Referências bibliográficas
FARMACOPÉIA DOS ESTADOS UNIDOS DO BRASIL. 2. ed. São Paulo: Indústria 
Gráfica Siqueira S.A., 1959. p. 45-46.
FARMACOPÉIA BRASILEIRA. 3. ed. São Paulo: Organização Andrei Editora S.A., 1977. 
p. 82-83.
067/IV Antioxidantes – Determinação de butil-hidroxianisol (BHA)
A solubilidade em álcool a 72% de quase todos os antioxidantes mais comu-
mente utilizados, favorece a análise dos mesmos. Após a extração dos antioxidan-
tes, podem ser feitas provas qualitativas envolvendo reações para a identificação ou 
cromatografia em camada delgada. O butil-hidroxianisol pode ser identificado em 
amostras de gorduras ou aditivos formulados contendo este antioxidante após a ex-
tração com álcool a 72% e posterior confirmação por meio de reação colorimétrica 
com 2,6-dicloroquinona cloroimida (reagente de Gibbs) e bórax. A reação do BHA, 
IAL - 175
após extração com álcool a 72%, com 2,6-dicloroquinonacloroimida em presença de 
bórax, forma um composto azul cuja concentração é medida porespectrofotometria 
620 nm, usando curva-padrão.
Material
Balança analítica, balança semi-analítica, espectrofotômetro UV/VIS, béqueres de (25 e 
100) mL, bastão de vidro, funil de separação tipo pêra de 250 mL, provetas graduadas de 
25, 50, 100 e 500 mL, balões volumétricos de 100, 200 e 500 mL, pipeta graduada de 2 
mL e pipetas volumétricas de (1 a 12) mL.
Reagentes
Éter de petróleo (60-100)°C 
Álcool absoluto
Bórax
2,6-Dicloroquinonacloroimida 
Padrão analítico de 3-BHA ou uma mistura conhecida dos dois isômeros 3-BHA e 2-BHA
Solução de álcool a 72% v/v – Adicione 360 mL de álcool em um balão volumétrico de 
500 mL e complete o volume com água.
Solução de bórax a 2% m/v – Pese 2 g de bórax – Na2B4O7.10H2O, transfira para um balão 
volumétrico de 100 mL e complete o volume com água.
Solução de 2,6-dicloroquinonacloroimida (reagente de Gibbs) – Pese 0,01 g de 2,6-
dicloro-quinonacloroimida (C6H2ONCl3), transfira para um balão volumétrico de 100 mL 
e complete o volume com álcool absoluto. Prepare a solução no dia do uso.
Procedimento – Dissolva 10 g da amostra em 50 mL de éter de petróleo e transfira 
quantitativamente para um funil de separação. Adicione 25 mL de álcool a 72% e agite. 
Separe a camada alcoólica e extraia mais duas vezes com 60 mL de álcool. Reúna os 
extratos alcoólicos e complete o volume até 200 mL com álcool a 72%. Adicione a uma 
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
176 - IAL
alíquota de 12 mL desta solução, 2 mL de uma solução de 2,6-dicloroquinonacloroimida 
a 0,01% e 2 mL de uma solução de bórax a 2% e agite. Meça a coloração desenvolvida em 
espectrofotômetro a 620 nm e determine a quantidade de BHA correspondente usando a 
curva-padrão previamente estabelecida.
Curva-padrão – Pese, com precisão, 0,1 g de BHA e dissolva em álcool a 72%. Transfira 
quantitativamente para um balão volumétrico de 100 mL, completando o volume. Retire 1 mL 
desta solução, transfira para outro balão volumétrico de 100 mL e complete o volume com o 
mesmo solvente. Tome alíquotas de 1, 2, 3, 4, 5, 6 e 7 mL desta última solução em béqueres 
de 25 mL e adicione, respectivamente, 11, 10, 9, 8, 7, 6 e 5 mL de álcool a 72%, totalizando 
12 mL em todos eles. Adicione 2 mL de solução de 2,6-dicloroquinonacloroimida a 0,01% 
em álcool absoluto e 2 mL de solução de bórax a 2%. Homogeneíze. Meça a coloração 
desenvolvida em espectrofotômetro a 620 nm usando como branco uma mistura constituída de 
12 mL de álcool a 72% e os dois reagentes acima mencionados. Construa a curva-padrão.
Referências bibliográficas
INSTITUTO ADOLFO LUTZ. Normas Analíticas do Instituto Adolfo Lutz. v. 1: 
Métodos Químicos e Físicos para Análises de Alimentos. 3. ed. São Paulo: IMESP, 1985. p. 85.
JOSEPHY, P.D.; VAN DAMME, A. Reaction of Gibbs reagent with para-substituted 
phenols. Anal. Chem. v. 56, p. 813-814.,1984.
MAHON, J.H.; CHAPMAN, R.Q. Butylated Hydroxianisole in lard and shortening. 
Anal. Chem. v. 23, n.8, p. 1120-1123, 1951.
068/IV Antioxidantes – Identificação de butil-hidroxianisol (BHA)
Basea-se na reação do BHA com 2,6-dicloroquinonacloroimida em presença de bó-
rax, após extração com álcool a 72%, para formar um composto azul.
Material
Balança semi-analítica, béqueres de 25 e 100 mL, balão volumétrico de 100 mL, provetas 
graduadas de 50 e 100 mL, funil de separação tipo pêra de 250 mL e pipetas graduadas de 
1 e 5 mL.
Reagentes
Éter de petróleo (60-100)°C
Álcool 
Bórax 
IAL - 177
2,6-Dicloroquinonacloroimida
Álcool a 72% v/v
Solução de bórax a 2% m/v 
Procedimento – Dissolva 20 g da amostra em 50 mL de éter de petróleo. Extraia em funilde separação com três porções de 30 mL de álcool a 72%. Reúna os extratos alcoólicos em 
balão volumétrico de 100 mL e complete com álcool a 72%. Adicione 1 mL de solução de 
bórax a 2% e alguns cristais de 2,6-dicloroquinonacloroimida a 5 mL de extrato alcoólico 
obtido no item anterior. Uma coloração azul indicará a presença de BHA.
Referência bibliográfica
JOSEPHY, P.D.; VAN DAMME, A. Reaction of Gibbs reagent with para-substituted 
phenols. Anal. Chem. v. 56, p. 813-814, 1984.
069/IV Antioxidantes – Determinação de butil hidroxitolueno (BHT)
O princípio deste método baseia-se na reação do BHT, após extração da amostra, 
com o-dianisidina e nitrito de sódio e na medida espectrofotométrica do composto verme-
lho-alaranjado formado. O BHT é melhor extraído por destilação com arraste de vapor e o 
destilado é utilizado na reação colorimétrica.
Material
Balança analítica, balança semi-analítica, espectrofotômetro UV/VIS, manta aquecedora elétrica, 
regulador de temperatura, suporte, garra, mufa, tubo de látex para condensador, bastão de vidro, 
funil de separação tipo pêra de 250 mL, provetas graduadas de 50 e 100 mL, condensador tipo 
reto, com junta esmerilhada 24/40, balões volumétricos de 100 e 250 mL, béqueres de 50, 100 
e 250 mL, pipetas graduadas de 2 e 5 mL e pipeta volumétrica de 25 mL.
Reagentes
Clorofórmio 
Nitrito de sódio 
o-Dianisidina (C14H16N2O2) 
Metanol
Carvão
Ácido clorídrico 1 M
Cloreto de magnésio (MgCl2.6H2O) 
Padrão analítico de BHT
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
178 - IAL
Solução-padrão de BHT a 0,05% m/v – Pese 0,05 g de BHT, transfira para um balão 
volumétrico de 100 mL e complete o volume com metanol.
Solução de nitrito de sódio a 0,3% m/v – Pese 0,3 g de nitrito de sódio, transfira para um 
balão volumétrico de 100 mL e complete o volume com água. Esta solução é estável, pelo 
menos, por duas semanas a 4ºC
Solução de o-dianisidina – Pese 250 mg de o-dianisidina (C14H16N2O2) e dissolva com 
50 mL de metanol. Adicione 100 mg de carvão. Agite por cinco minutos e filtre. 
Adicione a 40 mL do filtrado, 60 mL de ácido clorídrico 1 M. Prepare diariamente, e 
guarde ao abrigo da luz.
Solução de cloreto de magnésio – Pese 100 g de cloreto de magnésio e dissolva em 50 mL 
de água.
Procedimento – Monte o aparelho para destilação por arraste de vapor. Pese exatamente 
5 g da amostra e transfira para o frasco Erlenmeyer junto com 15 mL da solução de cloreto 
de magnésio. Adapte as juntas conectoras e destile com arraste de vapor à razão de 4 mL 
por minuto. Recolha de 100 a 125 mL do destilado em um balão volumétrico de 250 mL, 
completando o volume com metanol. A uma alíquota de 25 mL, adicione 2 mL da solução 
de nitrito de sódio e 5 mL da solução de o-dianisidina Após 10 minutos, extraia a fração 
colorida com 10 mL de clorofórmio. Meça espectrofotometricamente a 520 nm e determine 
a concentração de BHT, utilizando uma curva de calibração previamente construída.
Referência bibliográfica
INSTITUTO ADOLFO LUTZ. Normas Analíticas do Instituto Adolfo Lutz. v. 1: Métodos 
Químicos e Físicos para Análises de Alimentos. 3. ed. São Paulo: IMESP 1985. p. 85-86.
070/IV Antioxidantes – Identificação de butil hidroxitolueno (BHT)
Material
Balança semi-analítica, manta aquecedora, regulador de temperatura, suporte, garra e mufa, 
tubo de látex para condensador, balão de fundo redondo com junta esmerilhada 45/50 e 
capacidade para 5 L, tubo de vidro de 1,4 m de comprimento e 1,2 cm de diâmetro, juntas 
conectoras para frasco Erlenmeyer com presilha, frasco Erlenmeyer com junta esmerilhada 
29/32 e capacidade 500 mL, condensador tipo reto, com junta esmerilhada 24/40, balão 
volumétrico de 100 mL, provetas graduadas de (50 e 100) mL, béqueres de (50, 100 e 250) mL 
e pipetas graduadas de (2 e 5) mL.
IAL - 179
Reagentes
Clorofórmio 
Nitrito de sódio 
o-Dianisidina (C14H16N2O2)
Metanol
Carvão
Ácido clorídrico
Cloreto de magnésio (MgCl2.6H2O) 
Padrão analítico de BHT 
Solução de nitrito de sódio a 0,3% m/v, conforme 069/IV
Solução de o-dianisidina, conforme 069/IV
Solução de cloreto de magnésio, conforme 069/IV
Procedimento – Monte o aparelho para destilação por arraste de vapor. Pese 5 g da amostra, 
transfira para o frasco Erlenmeyer junto com 15 mL da solução de cloreto de magnésio. 
Adapte as juntas conectoras e destile com arraste de vapor à razão de 4 mL por minuto. 
Recolha de 100 a 125 mL do destilado em um béquer de 250 mL. Concentre, em banho-
maria, o destilado até 50 mL. A uma alíquota de 25 mL, adicione 5 mL de solução de 
o-dianisidina e 2 mL de solução de nitrito de sódio. Na presença de BHT, deverá formar 
uma coloração vermelho-alaranjada em até 10 minutos.
Referência bibliográfica
INSTITUTO ADOLFO LUTZ Normas Analíticas do Instituto Adolfo Lutz. v. 1: Métodos 
químicos e físicos para análise de alimentos, 3. ed. São Paulo: IMESP, 1985. p. 85-86.
071/IV Antioxidantes – Identificação de galatos
Este ensaio permite a identificação dos galatos em misturas de aditivos e baseia-se na 
extração dos galatos (propila, octila ou duodecila) com álcool a 72% e reação com hidróxido 
de amônio .
Material
Balança semi-analítica, béqueres de 10 e 100 mL, proveta graduada de 50 mL, funil 
de separação de 125 mL, balões volumétricos de 100 e 500 mL e pipetas graduadas 
de 1 e 5 mL.
Reagentes
Éter de petróleo 
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
180 - IAL
Álcool 
Hidróxido de amônio 
Solução de álcool a 72% v/v – Misture 360 mL de álcool e 140 mL de água.
Procedimento – Dissolva 20 g de amostra em 50 mL de éter de petróleo. Extraia em 
funil de separação com álcool a 72% (30 mL por três vezes). Reúna os extratos em balão 
volumétrico de 100 mL e complete o volume com álcool a 72%. Adicione 0,5 mL de 
hidróxido de amônio a 5 mL do extrato alcoólico. Uma coloração rósea indicará a presença 
de galatos.
Referência bibliográfica
INSTITUTO ADOLFO LUTZ. Normas Analíticas do Instituto Adolfo Lutz. v. 1: 
Métodos químicos e físicos para análise de alimentos, 3. ed. São Paulo: IMESP, 1985. p. 82.
072/IV Aromatizantes – Identificação e quantificação
A identificação e a quantificação dos componentes do aroma (aldeídos, ésteres, ceto-
nas, etc.) são efetuadas por cromatografia em fase gasosa, usando detector de ionização de 
chama (FID).
Material
Balança analítica, cromatógrafo a gás, coluna Carbowax 20 M ou equivalente, detector de 
ionização de chama (FID), balões volumétricos de 10 mL, pipetas graduadas de 2 mL e 
microsseringa de 10 μL.
Reagentes
Álcool 
Padrões analíticos de aldeídos, ésteres, cetonas, etc.
Solução-padrão – Com auxílio de uma pipeta, pese cerca de 100 mg dos padrões diretamente 
em balões volumétricos de 10 mL e complete o volume com álcool.
Condições cromatográficas – Temperatura do injetor: 230°C, temperatura do detector: 
250°C, programação de aquecimento da coluna: de (70 - 210)°C, 8°C/min, razão de splitter 
1:100.
Procedimento – Para aromas líquidos, pese diretamente em balão volumétrico de 10 mL, 
com auxílio de uma pipeta, uma quantidade da amostra de modo que a concentração do 
IAL - 181
analito estudado seja próxima a do padrão e em torno de 1%. Complete o volume com 
álcool. Para aromas em pó, pese uma quantidade da amostra cuja concentração do analito 
estudado seja próxima a do padrão. Transfira, com álcool, para um balão volumétrico de 
10 mL e complete o volume. Filtre, se necessário. Injete 1 μL da amostra e dos padrões no 
cromatógrafo e calcule a porcentagem dos analitos estudados por meio das áreas obtidas nos 
cromatogramas.
Cálculo
Cp = concentração do padrão
Ca = concentração da amostra
Ap = área do padrão
Aa= área da amostra
Referências bibliográficas
ARCTANDER, S. Perfum and flavor chemicals (aroma chemicals) v. 1-2. New Jersey, 
U.S.A.: publicado pelo autor, 1969.
Flavor and Fragrance Materials. Wheaton, USA: Allured Publishing Corporation, 1993.
073/IV Aromatizantes – Teor alcoólico a 20°C
A quantificação do teor alcoólico, quando presente, em aromas líquidos é determi-
nado conforme o método 0217/IV.
074/IV Aromatizantes – Identificação de óleos essenciais
Os óleos essenciais, quando presentes nos aromas, podem ser identificados por cro-
matografia em camada delgada ou quantificados com o uso do balão volumétrico tipo Cás-
sia. Quando puros, devem ser feitas as seguintes determinações físico-químicas: índice de 
refração a 20°C, densidade relativa a (20/20)°C e rotação óptica a 20°C. Os valores obtidos 
são comparados com os da literatura. Os aromas líquidos podem ser analisados diretamente 
ou após a separação dos óleos essenciais com solução saturada de cloreto de sódio, enquanto 
que os em pó devem ser previamente extraídos. Para amostras em pó, extraia com uma pe-
quena quantidade de álcool ou éter.
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
182 - IAL
Material
Placas de sílica gel 60 G (20 x 20)cm, estufa, câmara ultravioleta, cuba cromatográfica com 
tampa, frasco Erlenmeyer de 250 mL e provetas de 10 e 100 mL.
Reagentes
Ciclohexano 
Acetato de etila 
Ácido acético 
Ácido sulfúrico
Padrões analíticos de óleos essenciais
Fase móvel – Ciclohexano-acetato de etila-ácido acético (90:10:1).
Revelador – Solução aquosa de ácido sulfúrico a 10% (v/v).
Procedimento – Sature a cuba de vidro com a mistura de solventes da fase 
móvel. Coloque, com auxílio de um capilar, a amostra e os padrões em pontos 
diferentes da placa de sílica gel, preparada para cromatografia ascendente. Deixe 
secar. Coloque na cuba cromatográfica com o solvente e deixe correr até uns 
2 cm da extremidade superior da placa. Retire e deixe secar ao ar. Vaporize 
com o revelador. Seque em estufa a 105°C por alguns minutos tomando o 
cuidado de não deixar carbonizar a placa. Compare o cromatograma da amostra 
com o dos padrões. Antes de revelar a placa, observe o cromatograma sob luz 
ultravioleta.
075/IV Aromatizantes – Quantificação dos óleos essenciais
Material
Pipeta volumétrica de 10 mLe balão volumétrico tipo Cássia (110 mL de capacidade e 
gargalo graduado de 10 mL, subdividido em 0,1 mL).
Reagentes
Cloreto de sódio
 
Solução saturada de cloreto de sódio – Adicione cloreto de sódio em 1000 mL de água até 
saturar a solução.
Procedimento – Pipete 10 mL da amostra, transfira para um balão volumétrico 
tipo Cássia e complete o volume com solução saturada de cloreto de sódio. 
IAL - 183
O volume do óleo essencial separado (obtido na escala graduada do gargalo do 
balão) corresponde ao teor em porcentagem do óleo na amostra. 
076/IV Aromatizantes – Rotação óptica a 20°C
Material
Polarímetro
Procedimento – Transfira a amostra para um tubo de 1 dm de um polarímetro. 
Ajuste a temperatura da amostra a 20°C. Faça a determinação da rotação óptica com 
luz monocromática (lâmpada de sódio). Efetue no mínimo 5 leituras e calcule a média 
aritmética.
Cálculo
L = leitura no polarímetro
C = comprimento do tubo em dm
D = densidade da amostra
Referências bibliográficas
INSTITUTO ADOLFO LUTZ Normas Analíticas do Instituto Adolfo Lutz. v. 1: 
Métodos químicos e físicos para análise de alimentos, 3. ed. São Paulo: IMESP. 1985. p. 419.
FENAROLI, G. Sostanze Aromatiche Naturali. Milano, Italy: Editore Ulrico Hopepli, v. 
1:, 1963. 1004 p.
077/IV Aromatizantes – Índice de refração a 20°C
Material
Refratômetro
Procedimento – Faça circular uma corrente de água através do refratômetro de modo a 
manter a temperatura constante. Esta temperatura não deverá diferir da referência de + 2°C. 
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
184 - IAL
Antes de colocar o óleo essencial no instrumento, o mesmo deve estar à temperatura na qual 
a medida será efetuada. Coloque 2 gotas da amostra entre os prismas. Feche os prismas, 
focalize e corrija o índice de refração obtido pela leitura da escala, conforme o cálculo a 
seguir.
Cálculo
= índice de refração à temperatura de trabalho
t’ = temperatura de trabalho
t = 20°C
Referências bibliográficas
INSTITUTO ADOLFO LUTZ Normas Analíticas do Instituto Adolfo Lutz. v.1: 
Métodos químicos e físicos para análise de alimentos. São Paulo: IMESP. 3. ed., 1985. p. 420.
FENAROLI, G. Sostanze Aromatiche Naturali. Milano, Italy: Editore Ulrico Hopepli, 
v. 1, 1963. 1004 p. 
078/IV Aromatizantes – Densidade relativa a (20/20)°C
Material
Termômetro, picnômetro (ou densímetro digital) e dessecador.
Procedimento – Tare um picnômetro, previamente seco em estufa a 100°C. Encha-o com 
água, a 20°C e pese. Seque o picnômetro em estufa e coloque nele a amostra, a 20°C e 
pese.
Cálculo
A = massa do conjunto picnômetro e amostra menos a tara do picnômetro
B = massa do conjunto picnômetro e água menos a tara do picnômetro
IAL - 185
Referências bibliográficas
INSTITUTO ADOLFO LUTZ Normas Analíticas do Instituto Adolfo Lutz. v.1: 
Métodos químicos e físicos para análise de alimentos. São Paulo: IMESP. 3. ed., 1985. p. 421.
FENAROLI, G. Sostanze Aromatiche Naturali. Milano, Italy: Editore Ulrico Hopepli, 
v. 1, 1963. 1004 p.
079/IV Aromatizantes – Vanilina e correlatos
Pesquisa em aromas contendo: vanilina, etil vanilina, maltol, etil maltol, heliotropi-
na, cumarina, dihidrocumarina, etc.
Material
Papel Whatman nº 1, (20x20) cm, câmara ultravioleta, cuba cromatográfica com tampa, 
funil de separação de 250 mL, béqueres de 50 mL, balões volumétricos de 100 mL e 
microsseringa.
Reagentes
Isobutanol
Hidróxido de amônio 
Padrões analíticos de vanilina, etil vanilina, maltol, etil maltol, heliotropina, cumarina, dihi-
drocumarina
Solução-padrão – Prepare soluções a 1% de vanilina, etil vanilina, maltol, etil maltol, helio-
tropina, cumarina, dihidrocumarina, em álcool.
Fase móvel – Isobutanol (100 mL) e hidróxido de amônio a 2% (60 mL). Agite em funil de 
separação. Decante. A camada alcoólica (superior) é utilizada para correr o cromatograma. 
A camada aquosa (inferior) é utilizada para saturar a câmara. 
Procedimento – Coloque a camada alcoólica da fase móvel na cuba cromatográfica. Distri-
bua a camada aquosa da fase móvel em dois béqueres pequenos e coloque-os dentro da cuba, 
um em cada extremidade. Para amostras em pó, extraia com uma pequena quantidade de 
álcool ou éter e filtre. As amostras líquidas não necessitam de preparação. Aplique, com auxílio 
de um capilar, a amostra e os padrões em pontos diferentes do papel Whatman nº 1, prepara-
do para cromatografia ascendente. Deixe secar. Coloque-o na cuba cromatográfica contendo a 
fase móvel e deixe correr até 2 cm da extremidade superior do papel. Retire e deixe secar ao ar. 
Observe sob luz ultravioleta e marque as manchas obtidas. Compare com as dos padrões.
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
186 - IAL
Referência bibliográfica
INSTITUTO ADOLFO LUTZ Normas Analíticas do Instituto Adolfo Lutz. v.1: Métodos 
químicos e físicos para análise de alimentos. São Paulo: IMESP. 3. ed., 1985. p. 427-428.
080/IV Conservadores – Determinação espectrofotométrica simultânea de nitrito e 
nitrato
Esse método aplica-se às formulações simples de aditivos contendo nitritos, nitratos 
e cloreto de sódio. A razão das absorbâncias de uma solução aquosa de nitrito a 355 nm 
e a 302 nm é 2,5. O nitrato não absorve a 355 nm mas tem uma banda característica 
a 302 nm. A absorbância do nitrato pode ser calculadadividindo-se a absorbância do 
nitrito a 355 nm por 2,5 e subtraindo-se o quociente do total da absorbância a 302 nm. 
Em cubeta de 1 cm, o limite de detecção para nitrito é 0,02 mg/mL e 0,09 mg/mL para 
nitrato. O pH da solução não deve estar abaixo de 5 (o nitrito forma ácido nitroso, com 
uma absorbância máxima a 357 nm).
Material
Balança analítica, espectrofotômetro UV/VIS, béqueres de 25 mL e balões volumétricos de 
100 mL.
Reagente
Padrões analíticos de nitrato de sódio e nitrito de sódio
Procedimento – Pese 20 g da amostra, com precisão até mg. Transfira para um balão 
volumétrico de 100 mL e complete o volume com água. Ajuste o zero do espectrofotômetro, 
em unidades de absorbância a 302 ou 355 nm, utilizando água como branco e cubetas de 
1 cm. Meça a absorbância da amostra a 302 e 355 nm e calcule como descrito a seguir. 
Determine o teor de nitrito na amostra utilizando o valor da absorbância a 355 nm e a 
curva-padrão do nitrito. Para o nitrato, divida o valor desta absorbância por 2,5 e subtraia 
do valor da absorbância a 302 nm. Calcule a concentração de nitrato na amostra utilizando 
o valor de absorbância resultante desta subtração e a curva-padrão do nitrato.
Curva-padrão do nitrito – Prepare, em uma série de balões volumétricos de 100 mL, 
diferentes concentrações de nitrito (0,025 - 0,2)g/100 mL e meça a absorbância destas 
soluções a 355 nm.
IAL - 187
Curva-padrão do nitrato – Prepare, em uma série de balões volumétricos de 100 mL, 
diferentes concentrações de nitrato (0,1 - 1)g/100 mL e meça a absorbância destas soluções 
a 302 nm.
Cálculos
1. Em nitrito:
 
C = concentração de nitrito de sódio encontrada na curva-padrão a 355 nm
P = massa da amostra
2. Em nitrato:
C = concentração de nitrato de sódio obtido na leitura de Ac na curva-padrão
P = massa da amostra
Ac = absorbância corrigida
Referências bibliográficas
LARA, W.H.; TAKAHASHI, M. Determinação espectofotométrica de nitritos e nitratos 
em sais de cura. Rev. Inst. Adolfo Lutz, São Paulo, v. 52, p. 35-39, 1974.
WETTERS, J.M.; UGLUM, K.L. Direct spectrophotometric simultaneous determination 
of nitritre and nitrate in the ultraviolet. Anal. Chem., v. 42. p. 355-340, 1970.
081/IV Conservadores – Determinação de nitrato após redução em coluna de cádmio 
e de nitrito
Este método aplica-se à amostras de aditivos que possuem na sua formulação com-
postos que interferem na análise direta dos nitritos e nitratos por espectrofotometria no 
ultravioleta conforme 080/IV. A análise dos nitritos e nitratos é feita por espectrofotometria 
no visível, após redução dos nitratos em coluna de cádmio, conforme os métodos 283/IV 
e 284/IV.
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
188 - IAL
082/IV Conservadores – Determinação de propionatos
Os sais de cálcio e sódio do ácido propiônico têm ação antimicrobiana, sendo efeti-
vos no controle de bolores em farinhas e certos produtos de confeitaria. Os métodos para a 
sua determinação envolvem primeiro a extração, que geralmente é feita por destilação por 
arraste a vapor, seguida da separação e identificação do ácido propiônico junto aos demais 
ácidos que podem ser co-extraídos. Nesta etapa, pode-se utilizar as técnicas de cromatogra-
fia em fase gasosa, em camada delgada ou em papel.
Material
Banho-maria, aparelho completo para destilação por arraste a vapor, pipetas de 1, 2 e 5 mL, 
frasco Erlenmeyer de 200 mL, papel Whatman nº 1 (20 x 20) cm, microsseringa, vaporiza-
dor, pHmetro, béqueres de 100, 200, 400 e 600 mL, provetas de 10, 50, 100 e 500 mL e 
cuba cromatográfica com tampa.
Reagentes
Ácido sulfúrico 
Ácido fosfotúngstico 
Sulfato de magnésio 
Hidróxido de sódio
Papel indicador vermelho congo 
Hidróxido de amônio 
terc-Butanol 
n-Butanol 
Indicadores vermelho de metila e azul de bromotimol
Formol
Álcool 
Ácido propiônico
Solução aquosa de ácido fosfotúngstico a 20% – Em um frasco Erlenmeyer de 
200 mL, pese 20 g de ácido fosfotúngstico e dilua com 80 mL de água. Misture bem. Guar-
de em frasco de vidro com tampa.
Solução-padrão – Neutralize, com hidróxido de sódio 1 M, 1 mL de ácido propiônico e di-
lua até 100 mL. Use 4 mL desta solução para uma destilação igual à da amostra, recolhendo 
200 mL do destilado, neutralizando e secando nas mesmas condições descritas.
Fase móvel – terc-butanol-n-butanol-hidróxido de amônio (1:1:1).
Revelador – Misture 200 mg de vermelho de metila, 200 mg de azul de bromoti-
IAL - 189
mol, 100 mL de formol e 400 mL de álcool e ajuste o pH a 5,2 com hidróxido de 
sódio 0,1 M.
Procedimento – Transfira 20 g da amostra para um frasco de destilação, com au-
xílio de 50 mL de água. Adicione 10 mL de ácido sulfúrico 0,5 M, agite e adicione 
10 mL de ácido fosfotúngstico a 20% e agite novamente, por rotação, o frasco e adicione 
40 g de sulfato de magnésio. Agite. A mistura deve ser ácida quando se usa pa-
pel vermelho-congo; caso não seja, adicione ácido sulfúrico (1+1). Aqueça o fras-
co contendo a amostra antes de conectar no aparelho de destilação por arras-
te a vapor. Destile 200 mL em 35-40 minutos, recolha o destilado em béquer de 
400 mL, contendo 2 mL de solução de hidróxido de sódio 1 M. Evapore em banho-maria até 
secagem. Dissolva o resíduo em 2 mL de água. Deixe saturando na cuba de vidro o solvente: 
terc-butanol-n-butanol-hidróxido de amônio na proporção (1:1:1). Coloque 2 μL da solução 
da amostra e do padrão em pontos diferentes do papel Whatman nº 1, preparado para cro-
matografia ascendente. Deixe secar. Coloque-o na cuba cromatográfica contendo o solvente e 
deixe correr até aproximadamente 2 cm da extremidade superior do papel (5 horas). Retire e 
deixe secar ao ar. Vaporize com o revelador. Coloque o papel em atmosfera de amoníaco por 
alguns instantes. As manchas vermelhas correspondem aos ácidos voláteis. Como não são es-
táveis, marque logo que apareçam com lápis. Compare as manchas correspondentes à amostra 
e ao padrão. O mesmo Rf mostrará a presença do propionato na amostra e, se a intensidade 
da mancha for mais fraca que a do padrão, estará abaixo de 0,2% m/m.
Referência bibliográfica 
ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS. Official Methods of 
Analysis of the Association of Official Analytical Chemists 16th, Arlington: A.O.A.C., 
1996. chapter 47, p. 19 (method 970.36).
083/IV Conservadores – Identificação de ácido sórbico e sorbatos
O ácido sórbico e seus sais de sódio, potássio e cálcio têm ação mais efetiva sobre 
fermentos e fungos do que em bactérias e agem melhor em meio ácido. Podem ser iden-
tificados em formulações de aditivos ou em alimentos após adequada extração. Eles são 
convertidos em ácido sórbico após acidulação e são extraídos das amostras por destilação 
com arraste de vapor d’água e posteriormente identificados por cromatografia em papel ou 
com ácido tiobarbitúrico.
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
190 - IAL
Material
Balança analítica, balança semi-analítica, banho-maria, espectrofotômetro UV/VIS, estufa, 
manta aquecedora, regulador de temperatura, suporte, garra, mufa, tubo de látex para 
condensador, béqueres de 100 e 400 mL, balão de fundo redondo com junta esmerilhada 45/50 
e com capacidade para 5 L, tubo de vidro de 1,40 m de comprimento e 1,2 cm de diâmetro, juntas 
conectoras para frasco Erlenmeyer com presilha, frasco Erlenmeyer com junta esmerilhada 
29/32 com capacidade para 500 mL, condensador tipo reto com junta esmerilhada 24/40, 
funil de separação tipo pêra de 250 mL, pipeta graduada de 2 mL, provetas graduadas de 25 e 
200 mL, balões volumétricos de 1000, 500 e 100 mL e tubo capilar de vidro.
Reagentes
Cloreto de sódio 
Ácido fosfórico 
Sulfato de magnésio 
Hidróxido de sódio 
Éter 
Ácido sulfúricoÁcido sórbico 
Propanol 
Acetato de etila 
Hidróxido de amônio 
Solução de ácido sórbico 0,001% m/v – Pese 0,001 g de ácido sórbico (C6H8O2) e dissolva 
em água suficiente para 100 mL em balão volumétrico.
Solução de hidróxido de sódio 1 M – Dissolva 4 g de hidróxido de sódio com água em um béquer 
de 100 mL, esfrie, transfira para um balão volumétrico de 100 mL e complete o volume.
Solução de ácido sulfúrico 0,005 M – Dissolva 0,3 mL de ácido sulfúrico em água, esfrie, 
transfira para um balão volumétrico de 1000 mL e complete o volume.
Solução saturada de cloreto de sódio – Adicione cloreto de sódio em 1000 mL de água até 
saturar a solução.
Procedimento – Monte o aparelho para destilação por arraste de vapor. Pese 5 g da amostra 
ou meça 5 mL, se a amostra for líquida. Transfira para o frasco Erlenmeyer de 500 mL com 
200 mL de solução saturada de cloreto de sódio. Acidule com 2 mL de ácido fosfórico. 
Adicione 7,5 g de sulfato de magnésio. Destile cerca de 350 mL, com arraste de vapor 
d’água para um béquer de 400 mL contendo 10 mL de hidróxido de sódio 1 M, inclinando 
o béquer de modo a manter a extremidade do condensador imersa na solução alcalina. 
Evapore o destilado em banho-maria até reduzir o volume a 100 mL. Esfrie. Transfira para 
um funil de separação, acidule e extraia com 4 porções de éter. Reúna os extratos e evapore 
IAL - 191
o éter sem levar à secura. Dissolva o resíduo em 0,5 mL de água. Acidule a solução aquosa 
com ácido sulfúrico 0,005 M e aplique com capilar em papel cromatográfico Whatman 
nº 4 ou equivalente, paralelamente com o padrão de ácido sórbico a 0,001%. Coloque 
em cuba cromatográfica previamente saturada com o solvente propanol-acetato de etila-
hidróxido de amônio-água (3:1:1:1) e deixe correr até ± 2 cm da extremidade superior do 
papel. Retire e seque a 60°C. Observe o cromatograma em câmara com luz ultravioleta (± 
255 nm). Compare as manchas da amostra e do padrão.
A identificação do ácido sórbico, após a extração por arraste de vapor, também pode 
ser realizada como descrito no método colorimétrico 085/IV, utilizando o ácido 
tiobarbitúrico.
Referência bibliográfica
INSTITUTO ADOLFO LUTZ. Normas Analíticas do Instituto Adolfo Lutz. v.1: 
Métodos químicos e físicos para análise de alimentos. São Paulo: IMESP. 3. ed., 1985. p. 103. 
084/IV Conservadores – Determinação de ácido sórbico e sorbatos por espectrofoto-
metria no UV
O ácido sórbico e seus sais podem ser quantificados em alimentos ou formulações 
de aditivos após sua extração. Este método baseia-se na extração do ácido sórbico ou de seus 
sais, convertidos em ácido sórbico após acidificação, por destilação com arraste de vapor e 
posterior leitura espectrofotométrica a 254 nm.
Material
Balança analítica, balança semi-analítica, banho-maria, espectrofotômetro UV/VIS, estufa, 
manta aquecedora, regulador de temperatura, suporte, garra, mufa, tubo de látex para 
condensador, pHmetro, pipetador automático de 100 a 1000 μL e de 1 a 5 mL com as 
respectivas ponteiras, papel de filtro qualitativo, béqueres de 25, 100 e 400 mL, balão de 
fundo redondo com junta esmerilhada 45/50 e com capacidade para 5 L, tubo de vidro de 
1,4 m de comprimento e 1,2 cm de diâmetro, juntas conectoras para frasco Erlenmeyer 
com presilha, frasco Erlenmeyer com junta esmerilhada 29/32 e com capacidade para 
500 mL, condensador tipo reto com junta esmerilhada 24/40, pipeta graduada de 2 mL e 
balões volumétricos de 500 e 1000 mL.
Reagentes
Cloreto de sódio 
Ácido fosfórico 
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
192 - IAL
Sulfato de magnésio (MgSO4.7H2O) 
Hidróxido de sódio 
Ácido sulfúrico
Ácido sórbico (C6H8O2)
Solução de ácido sulfúrico 0,005 M – Dissolva 0,3 mL de ácido sulfúrico em água, esfrie, 
transfira para um balão volumétrico de 1000 mL e complete o volume.
Procedimento – Proceda como no método 083/IV, até: “inclinando o béquer de modo 
a manter a extremidade do condensador imersa na solução alcalina”. Dissolva o resíduo da 
destilação, obtido no item anterior, com água até 500 mL, acidulando com ácido sulfúrico 
0,005 M, a fim de obter pH 5,9. Ajuste o zero do espectrofotômetro a 254 nm, utilizando 
como branco água acidulada com ácido sulfúrico 0,005 M até pH igual a 5,9, em cubeta de 
1 cm de caminho óptico. Meça a absorbância da amostra a 254 nm. 
Cálculo
Calcule a concentração usando o valor = 2200, ou uma curva-padrão construída com 
soluções-padrão de ácido sórbico (ou sorbato de potássio).
Referência bibliográfica
INSTITUTO ADOLFO LUTZ Normas Analíticas do Instituto Adolfo Lutz. v.1: 
Métodos químicos e físicos para análise de alimentos. São Paulo: IMESP, 3. ed., 1985. p. 
103.
085/IV Conservadores – Determinação de ácido sórbico por espectrofotometria no 
visível
Este método baseia-se na extração do ácido sórbico ou de seus sais, convertidos em 
ácido sórbico, com clorofórmio na reação colorimétrica com ácido tiobarbitúrico e poste-
rior leitura espectrofotométrica a 530 nm.
Material
Balança analítica, banho-maria, espectrofotômetro UV/VIS, suporte, garra, mufa, pa-
rafilme, papel de filtro qualitativo, funil de separação, tipo pêra, de 250 mL, balões volu-
métricos de 25, 50, 100, 200, 250, 500 e 1000 mL, pipetas volumétricas de 1, 2, 5, 10, 
25 mL, funil para filtração, tubo de ensaio, pipetador automático de 100 a 200 μL e de 1 
a 5 mL com as respectivas ponteiras, béqueres de 25, 100 e 400 mL e provetas graduadas 
de 25, 50 e 200 mL.
IAL - 193
Reagentes
Clorofórmio 
Sulfato de sódio anidro
Ácido sórbico 
Ácido clorídrico
Dicromato de potássio
Bicarbonato de sódio
Ácido sulfúrico
Solução-padrão – Pese, com precisão, cerca de 100 mg de ácido sórbico, transfira para um 
balão volumétrico de 1000 mL completando o volume com água . Esta solução tem concen-
tração de 100 μg/mL. Retire 1 mL desta solução e leve para um balão volumétrico de 50 mL, 
completando o volume. Esta solução tem concentração de 2 μg/mL. Retire 5 mL da solução 
a 100 μg/mL e leve para um balão volumétrico de 100 mL, completando o volume. Esta 
solução tem concentração de 5 μg/mL.
Solução de ácido clorídrico (1:1) – Dissolva 25 mL de ácido clorídrico em 25 mL de 
água.
Solução de bicarbonato de sódio 0,5 M – Dissolva 4,2 g de bicarbonato de sódio em água, 
transfira para um balão volumétrico de 100 mL e complete o volume com água.
Solução de dicromato de potássio – Pese 0,49 g de dicromato de potássio e dissolva em 
balão volumétrico de 1000 mL, com aproximadamente 500 mL de água. Adicione 8 mL 
de ácido sulfúrico e complete o volume com água.
Solução de ácido tiobarbitúrico a 0,5% m/v – Dissolva 0,5 g de ácido tiobarbitúrico em 
água, aquecendo em banho-maria para dissolver, esfrie, transfira para um balão volumétrico 
de 100 mL e complete o volume. Prepare na hora de usar.
Procedimento – Pese , com precisão, 5 g da amostra (triture no liqüidificador, se necessário), 
transfira para um balão volumétrico de 250 mL e complete o volume com água. Filtre se 
necessário, e pipete 10 mL do filtrado para um funil de separação de 250 mL e extraia, por 
agitação durante 1 minuto, com duas porções de 40 mL de clorofórmio (pode-se aumentar 
para 4 extrações de 25 mL, se necessário). Recolha a fase clorofórmica em balão volumétrico 
de 100 mL ou outro de volume adequado, passando por um funil com sulfato de sódio anidro. 
Complete o volume com clorofórmio. Pipete 25 mL desta solução para um funil de separação de 
250 mL e extraia com 15 mL de solução de bicarbonato de sódio 0,5 M, agitando durante 
1 minuto, despreze a fase clorofórmica e transfira quantitativamente a fase aquosa para um 
balão volumétrico de 25 mL (pode-se aumentar para 4 extrações de 20 mL, se necessário; 
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos -4ª Edição
1ª Edição Digital
194 - IAL
nesse caso, receba o extratos em um balão volumétrico de 100 mL). Adicione ácido clorídrico 
1:1 cuidadosamente até que a solução fique ácida e complete o volume com água. Pipete 2 
mL para um tubo de ensaio contendo 2 mL de solução sulfúrica de dicromato de potássio. 
Cubra os tubos com parafilme e coloque-os em um banho de água fervente, por 5 minutos. 
Retire-os e, imediatamente, adicione 2 mL de solução de ácido tiobarbitúrico, cobrindo-os 
novamente com parafilme. Coloque os tubos de ensaio novamente em um banho de água 
fervente, durante 10 minutos. Retire os tubos e deixe esfriar. Faça um branco usando 2 mL 
de água em lugar da amostra. Leia a absorbância a 530 nm e compare com uma curva-
padrão obtida nas mesmas condições da análise.
Curva-padrão – Retire com pipetador automático, porções de 0,5; 1; 1,5 e 2 mL da solução-
padrão a 2 μg/mL para 4 tubos de ensaio e adicione 1,5; 1; 0,5 e 0 mL de água, respecti-
vamente. Estas soluções contêm 1, 2, 3 e 4 μg de ácido sórbico, pela ordem. Retire, com 
pipetador automático, porções de 1; 1,2; 1,4; 1,6; 1,8 e 2 mL da solução a 5 μg/mL para 
6 tubos de ensaio e adicione 1; 0,8; 0,6; 0,4; 0,2 e 0 mL de água respectivamente. Estas 
soluções contêm 5, 6, 7, 8, 9 e 10 μg de ácido sórbico, pela ordem. Proceda a determinação 
como descrito acima. Construa o gráfico absorbância x μg ácido sórbico/6 mL solução.
Nota: após a extração do analito, pode-se também fazer a quantificação por meio de 
leitura direta a 254 nm da solução aquosa final, utilizando como branco uma solução de 
bicarbonato de sódio. Outro modo de determinar o ácido sórbico seria a extração deste por 
arraste de vapor (como descrito no método 083/IV), recolhendo o destilado e levando este 
a um volume definido, se necessário e proceda a determinação como descrito acima.
Referência bibliográfica
INSTITUTO ADOLFO LUTZ Normas Analíticas do Instituto Adolfo Lutz. v.1: 
Métodos químicos e físicos para análise de alimentos. São Paulo: IMESP, 3. ed., 1985. p. 103.
086/IV Corantes artificiais – Identificação por cromatografia em papel
Material
Balança analítica, papel Whatman nº 1, cuba cromatográfica, balão volumétrico de 100 
mL e capilares de vidro.
Reagentes
Citrato de sódio
Hidróxido de amônio
IAL - 195
n-Butanol
Álcool
Soluções-padrão – Prepare as soluções aquosas de padrões dos corantes a 1% m/v.
Fase móvel (Solvente A) – Pese 2 g de citrato de sódio, transfira para um balão volumétrico 
de 100 mL, adicione 20 mL de hidróxido de amônio e complete o volume com água. 
Fase móvel (Solvente B) – n-butanol-álcool-água-hidróxido de amônio (50:25:25:10).
Procedimento – Prepare soluções aquosas das amostras a 1%. Sobre uma folha de papel 
Whatman nº 1, a 2 cm da extremidade, em pontos distantes 2 cm uns dos outros, aplique 
com um tubo capilar as soluções das amostras e dos respectivos padrões dos corantes. 
Desenvolva o cromatograma com o solvente A ou B. O valor de Rf e a coloração da mancha 
devem ser idênticos aos do padrão. A visualização da mancha também pode ser feita à 
luz ultravioleta, onde tem-se melhor nitidez dos contornos e, em certos casos, de algumas 
manchas que não foram vistas no exame direto.
Nota: os cromatogramas feitos com os solventes A e B não levam sempre ao mesmo resultado. 
Alguns corantes mudam inteiramente os valores de Rf de um para outro solvente e outros 
se mostram mais puros em solvente A que em solvente B. O cromatograma com solvente 
A é o mais usado por ser mais rápido, apesar dos contornos das manchas não serem muito 
precisos. Outros solventes também podem ser usados como mostra a Tabela 1.
Tabela 1 – Rf e absorbância máxima de alguns corantes artificiais permitidos em 
alimentos 
Corante Classe
R
f 
no solvente
Abs. Máx.(nm)
A B C D E F
Bordeaux S ou 
Amaranto
Azo
0,62 0,27 0,29 0,14 0,19 0,11
520 
(em meio ácido)
Eritrosina Xanteno 0,21 0,52 0,61 1,00 0,58 0,47 525 (em meio ácido)
Amarelo 
crepúsculo Azo 0,73 0,72 0,46 0,28 0,45 0,40
480
 (em meio ácido)
Tartrazina Pirazolona 0,91 0,41 0,28 0,12 0,17 0,09 430 (em meio ácido)
Indigotina Indigóide 0,52 0,27 0,25 0,14 0,20 0,30 285 e 615(em meio ácido)
A = Hidróxido de amônio-água (1: 99)
B = Cloreto de sódio a 2% em álcool a 50%
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
196 - IAL
C = Isobutanol-álcool-água (1:2:1)
D = n-Butanol-água-ácido acético glacial (20:12:5)
E = Isobutanol-álcool-água (3:2:2) e 1 mL de hidróxido de amônio para 99 mL da mistura 
anterior 
F = Solução de 80 g de fenol em 20 mL de água 
Referência bibliográfica
GAUTIER, J.A.; MALANGEAU, P. Mises au Point de Chimie Analytique Organique – 
Pharmaceutique et Bromatologique. 13. ed., Paris: Masson & Cie., 1964. p. 70, 71, 91.
087/IV Corantes artificiais – Identificação por espectrofotometria
Material
Balança analítica, pHmetro, espectrofotômetro UV/VIS, balão volumétrico de 100 mL , 
pipeta de 1 mL e balão de 2 L.
Reagentes
Ácido acético
Acetato de amônio 0,02 M (pH 5,6) – Pese 3,08 g de acetato de amônio e transfira para 
balão volumétrico de 2 L, dilua com água, acerte o pH da solução para 5,6 com ácido 
acético e complete o volume com água.
Procedimento – Pese 0,1 g da amostra e dilua a 100 mL com uma solução de acetato de 
amônio 0,02 M (pH 5,6). Pipete 1 mL desta solução e dilua a 100 mL com a solução de 
acetato de amônio 0,02 M. Controle o pH da solução para 5,6. Trace o espectro do corante 
no intervalo de 200 a 600 nm. Os máximos e mínimos de absorção são bem definidos, po-
dendo variar de 2 a 3 nm. Compare com os espectros obtidos nas mesmas condições para 
os corantes-padrão.
Referência bibliográfica
JOINT FAO/WHO EXPERT COMMITTEE ON FOOD ADDITTIVES. Guide to 
specifications for general notices, general analytical techniques, identification tests, 
test solutions and other reference materials. Rome, 1991. p. 114 ( FNP5/rev.2).
088/IV Corantes artificiais – Quantificação por espectrofotometria
Material
Balança analítica, pHmetro, espectrofotômetro UV/VIS, balões volumétricos de 100, 200 
IAL - 197
e 1000 mL, pipetas volumétricas de 1 e 10 mL e frasco Erlenmeyer de 250 mL.
Reagentes
Ácido acético
Acetato de amônio 0,02 M 
Acetato de amônio 0,02M (pH 5,6) – Pese 3,08 g de acetato de amônio e transfira para 
balão volumétrico de 2 L, dilua com água, acerte o pH da solução para 5,6 com ácido 
acético e complete o volume com água.
Procedimento – Para os corantes amarelo-crepúsculo, tartrazina, indigotina, bordeaux S, 
eritrosina, ponceau 4R, vermelho 40 e azorrubina, prepare soluções a 0,001% em acetato 
de amônio 0,02 M (pH 5,6). Para os corantes azul-brilhante e azul-patente, prepare uma 
solução a 0,0005% em acetato de amônio 0,02 M (pH 5,6). Para o corante verde-sólido 
FCF, pese com precisão, de 50 a 75 mg do corante, transfira para um balão volumétrico de 1 
L, dissolva e complete o volume com água. Ajuste o zero do espectrofotômetro, em unidades 
de absorbância no comprimento de máxima absorção do corante a ser medido, utilizando a 
solução de acetato de amônio como branco e cubetas de 1 cm. Meça no comprimento de 
onda de absorção máxima no visível, indicado na Tabela 2, a absorbância das soluções de 
corantes. Para o corante verde sólido FCF, pipete 10 mL da solução anterior para um frasco 
Erlenmeyer de 250 mL, contendo 90 mL de acetato de amônio 0,04 M, misture bem e faça a 
leitura a 625 nm. Calcule a concentração de cada corante utilizando o valor da absortividade 
( ).
Cálculos
 
A = absorbância da solução da amostra
C = concentração da solução da amostra (g/100 mL)
Para o verde-sólido FCF:
A = absorbância da solução da amostraa = absortividade
P = peso da amostra em g
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
198 - IAL
Tabela 2 - Características espectrofotométricas de alguns corantes
Corantes INS *
Colour
Index
 no 
máximo do 
visível
Absorção 
máxima no 
visível (nm)
Amarelo-crepúsculo
Tartrazina
Azul-brilhante
Indigotina
Azul-patente V
Verde-sólido FCF
Bordeaux S ou amaranto
Eritrosina
Ponceau 4R ou N cocina
Vermelho 40
Azorrubina ou carmoisina 
110
102
133
132
131
143
123
127
124
129
122
15985
19140
42900
73015
42051
42053
16185
45430
16255
16035
14720
564,1
536,6
1640,0
449,3
2089
**
436,0
1130,0
442,5
536,0
518,6
481
426
630
610
640
625
519
524
507
505
515
*Sistema Internacional de Numeração
**Para o verde-sólido FCF, a absortividade é de 0,156 mg/L/cm.
Referências bibliográficas
COMMITTEE ON FOOD CHEMICALS CODEX Food Chemicals Codex. 4. ed., 
Washington D. C.: National Academic Press, 1996. p. 142, 773.
GAUTIER, J.A.; MALANGEAU, P. Mises au Point de Chimie Analytique Organique – 
Pharmaceutique et Bromatologique. 13. ed., Paris: Masson & Cie., 1964. p. 70, 71, 91. 
089/IV Corantes artificiais – Quantificação por titulação com cloreto de titânio
A porcentagem de corante puro pode muitas vezes ser determinada pela titulação 
com cloreto de titânio, usando-se uma solução-tampão adequada. Na maioria dos casos, a 
própria amostra serve como indicador, visto que no ponto final ocorre a descoloração da 
solução. Se a amostra contiver uma mistura de dois ou três corantes, é necessária uma sepa-
ração por cromatografia antes de se efetuar a titulação.
Material
Balança analítica, aparelho de Kipp para gerar de CO2 e H2 , agitador, balão de 2000 mL, 
frasco Erlenmeyer de 500 mL, provetas de 25 e 50 mL e bureta de 50 mL.
IAL - 199
Reagentes 
Solução de tricloreto de titânio 0,1 M – Misture 200 mL de solução de tricloreto de titânio 
comercial a 15% com 150 mL de ácido clorídrico. Ferva a mistura durante 2 minutos e 
resfrie em água fria. Adicione água até completar 2000 mL. Misture bem e borbulhe CO2 
ou N2 na solução por uma hora. Antes de padronizar, mantenha a solução sob atmosfera de 
hidrogênio por pelo menos 16 horas usando um aparelho gerador Kipp.
Padronização da solução de tricloreto de titânio – Transfira 3 g de sulfato duplo de ferro e 
amônio para um frasco Erlenmeyer de 500 mL. Introduza uma corrente de gás carbônico. 
Adicione 50 mL de água recentemente fervida e 25 mL de ácido sulfúrico 5 M. Adicione, 
rapidamente, com auxílio de uma bureta, 30 mL de solução de dicromato de potássio 0,0167 
M (não interrompa a corrente de CO2). Transfira a solução de tricloreto de titânio para uma 
bureta e coloque rapidamente no frasco Erlenmeyer até pouco acima do ponto de viragem. 
Adicione rapidamente 5 mL de tiocianato de amônio a 20% e complete a titulação até que 
desapareça a coloração vermelha e a solução permaneça verde. Efetue uma determinação 
em branco com 3 g de sulfato duplo de ferro e amônio, utilizando as mesmas quantidades 
de água, ácido e solução de tiocianato de amônio e passe uma corrente contínua de gás 
carbônico na solução.
Cálculo
A = mL da solução de dicromato de potássio 0,0167 M adicionado
f = fator da solução de dicromato de potássio 0,0167 M adicionado
V = mL (corrigido) da solução de tricloreto de titânio gasto na titulação
Procedimento – O aparelho para determinação do teor de corante por titulação com 
TiCl3 (Figura 1) consiste de um frasco de estocagem (A) do titulante TiCl3 mantido 
sob atmosfera de hidrogênio, produzido por uma aparelho gerador de Kipp, um frasco 
Erlenmeyer (B), equipado com uma fonte de CO2 ou N2, para manter a atmosfera 
inerte, onde a reação se realizará; um agitador e uma bureta (C). Pese a quantidade da 
amostra de acordo com a Tabela 3. Transfira para um frasco Erlenmeyer de 500 mL, 
com auxílio de 150 mL de água. Adicione 10 g de citrato de sódio ou 15 g de bitartarato 
de sódio (Tabela 3). Titule com a solução-padrão de cloreto de titânio sem interromper a 
corrente de CO2 e o aquecimento.
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
200 - IAL
Figura 1 – Aparelho para determinação do teor de corante por titulação com TiCl3
Cálculo
A = mL (corrigido) de solução-padrão de cloreto de titânio gasto na titulação
D = peso (em g) do corante equivalente a 1 mL da solução-padrão de cloreto de titânio 
0,1 M ( Tabela 3)
f = fator da solução-padrão de cloreto de titânio 0,1 M 
P = peso da amostra 
IAL - 201
Tabela 3 - Titulação com cloreto de titânio
Corante
Massa em g da 
amostra a ser 
usada na titulação
Adicionar
15 - 10 g * 
nº de g do corante 
equivalente a 1 mL 
da solução-padrão 
de TiCl
3
 0,1 M
Amarelo-crepúsculo
Tartrazina
Bordeaux S ou amaranto
Ponceau 4R
Vermelho 40
Azorrubina
Azul-brilhante
Indigotina
Azul-patente V
Verde-sólido FCF
0,5 – 0,6
0,6 – 0,7
0,7 – 0,8
0,7 – 0,8
0,5 – 0,6
0,5 – 0,6
1,8 – 1,9
1,0 – 1,1
1,3 – 1,4
1,9 – 2,0
Citrato
Bitartarato
Citrato
Citrato
Bitartarato
Bitartarato
Bitartarato
Bitartarato
Bitartarato
Bitartarato
0,01131
0,01356
0,01511
0,01578
0,01241
0,01256
0,03965
0,02332
0,02898
0,04045
*15 g, se for bitartarato ou 10 g, se for citrato.
Referências bibliográficas
COMMITTEE ON FOOD CHEMICALS CODEX Food Chemicals Codex. 4th ed., 
Washington D. C.: National Academic Press, 1996. p. 142, 773-774.
JOINT FAO/WHO EXPERT COMMITTEE ON FOOD ADDITTIVES. Guide to 
specifications for general notices, general analytical techniques, identification tests, 
test solutions and other reference materials. Rome, 1991. p. 116-118. 
ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS. Official methods of 
analysis of the Associatio of Official Analytical Chemists. 16th, Arlington: A.O.A.C., 
1996, chapter 46. p. 10, 11 (method 950.61).
JOINT FAO/WHO EXPERT COMMITTEE ON FOOD ADDITTIVES. Compendium 
of food addittive specifications. Rome, 1992, p. 37, 71, 176, 219, 639, 783, 1051, 1141, 
1463, 1483. 
090/IV Corantes artificiais – Determinação de eritrosina por gravimetria
O procedimento gravimétrico simples permite somente a determinação da eritrosina 
na matéria-prima do corante puro.
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
202 - IAL
Material
Balança analítica, estufa, béquer de 400 mL, pipeta de 5 mL, placa filtrante. provetas de 10 
e 50 mL, dessecador com sílica gel ou cloreto de cálcio anidro e bastão de vidro.
Reagentes
Ácido nítrico (1+19) 
Ácido nítrico (1+179)
Procedimento – Estabilize a temperatura da estufa para 135°C. Pese 0,25 g da amostra e 
transfira com auxílio de 100 mL de água para um béquer de 400 mL. Adicione 5 mL de 
ácido nítrico (1 + 19), agite com um bastão de vidro, filtre em placa filtrante previamente 
aquecida em estufa a 135°C, resfriada em dessecador e pesada. Lave o béquer e a placa com 
50 mL de ácido nítrico (1 + 179) e depois com 10 mL de água, evitando que o precipitado 
seque. Seque, aqueça em estufa a 135°C, resfrie em dessecador e pese. Repita as operações 
de aquecimento e resfriamento até peso constante.
Cálculo
N = g da substância precipitada
P = g da amostra
Referência Bibliográfica
JOINT FAO/WHO EXPERT COMMITTEE ON FOOD ADDITTIVES. 
Compendium of Food Additive Specifications. Rome , 1992. p. 573.
091/IV Corantes artificiais – Determinação de substâncias insolúveis em água
Material
Estufa, balança analítica, béquer de 250 mL, proveta de 200 mL, placa filtrante e dessecador 
com sílica gel ou cloreto de cálcio anidro.
Procedimento – Estabilize a temperatura da estufa para 135°C. Pese 5 g da amostra, transfi-
ra para um béquer de 250 mL, com auxílio de200 mL de água quente (80-90)°C. Agite para 
dissolver o corante e deixe esfriar a solução à temperatura ambiente. Filtre a solução através 
IAL - 203
de uma placa filtrante (porosidade 4), previamente aquecida a 135°C, por 1 hora, resfriada 
em dessecador e pesada. Lave com água fria até as águas de lavagem se tornarem incolores. 
Seque o filtro com o resíduo, aqueça em estufa a 135°C, resfrie em dessecador e pese.
Cálculo
N = nº de g de substâncias insolúveis em água
P = nº de g da amostra
Referência bibliográfica
JOINT FAO/WHO EXPERT COMMITTEE ON FOOD ADDITTIVES. Guide to 
specifications for general notices, general analytical techniques, identifications tests, 
test solutions and other reference materials. Rome, 1991. p. 132.
092/IV Corantes artificiais – Determinação de substâncias voláteis a 135°C
Material
Estufa, balança analítica, pesa-filtro com tampa e dessecador com sílica gel ou cloreto de 
cálcio anidro
Procedimento – Estabilize a temperatura da estufa para 135°C. Pese 5 g da amostra em 
um pesa-filtro com tampa esmerilhada, previamente aquecido em estufa a 135°C, por 1 
hora, resfriado em dessecador até a temperatura ambiente e pesado. Aqueça a 135°C, por 
12 horas. Resfrie em dessecador até à temperatura ambiente e pese. Repita as operações de 
aquecimento e resfriamento até peso constante. 
Cálculo
 
N = perda de peso em g
P = nº g da amostra
Referência bibliográfica
JOINT FAO/WHO EXPERT COMMITTEE ON FOOD ADDITTIVES. Guide to 
specifications for general notices, general analytical techniques, identifications tests, 
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
204 - IAL
test solutions and other reference materials. Rome, 1991. p. 131-132.
093/IV Corantes artificiais – Determinação de sulfatos
Material
Mufla, balança analítica, papel de filtro, frasco Erlenmeyer de 250 mL, proveta de 
100 mL, balão volumétrico de 200 mL, pipeta de 100 mL, béquer de 600 mL, 
proveta de 300 mL, pipeta graduada de 20 mL, pipeta graduada de 2 mL e cadinho 
de porcelana.
Reagentes
Cloreto de sódio isento de sulfatos
Solução saturada de cloreto de sódio
Ácido clorídrico
Solução de cloreto de bário 0,125 M
Procedimento – Estabilize a temperatura da mufla para 500°C. Pese 5 g da amostra 
e transfira para um frasco Erlenmeyer de 250 mL, com auxílio de 100 mL de água. 
Aqueça em banho-maria, adicione 35 g de cloreto de sódio, isento de sulfatos, tampe 
o frasco Erlenmeyer e agite em intervalos freqüentes, durante 1 hora. Esfrie, transfira 
com auxílio de solução saturada de cloreto de sódio para um balão volumétrico de 
200 mL e complete o volume. Agite, deixe em repouso por algumas horas. Filtre a 
solução através de papel de filtro seco e transfira 100 mL do filtrado, com auxílio de 
uma pipeta, para um béquer de 600 mL, dilua até 300 mL com água e acidule com 
ácido clorídrico, adicionando 1 mL em excesso. Aqueça a solução até ebulição e adi-
cione um excesso de solução de cloreto de bário 0,125 M, gota a gota, com agitação. 
Deixe repousar a mistura sobre uma placa quente durante 4 horas ou deixe por uma 
noite à temperatura ambiente. Separe por filtração o sulfato de bário, lave com água 
quente e calcine o papel de filtro com o resíduo em um cadinho previamente aque-
cido em mufla a 500°C, resfriado em um dessecador até a temperatura ambiente e 
pesado. Leve o cadinho com a substância à mufla a 500°C, por uma hora. Resfrie em 
dessecador e pese.
Cálculo
IAL - 205
N = nº de g de sulfato de bário
S = nº de g da amostra usado na precipitação
Referência bibliográfica
INSTITUTO ADOLFO LUTZ Normas Analíticas do Instituto Adolfo Lutz. v.1: 
Métodos químicos e físicos para análise de alimentos. São Paulo: IMESP, 3. ed., 1985. p. 
410.
094/IV Corantes artificiais – Determinação de cloretos
Material
Potenciômetro, eletrodo Ag+/AgCl, balança analítica, béquer de 400 mL, proveta de 
200 mL, pipeta graduada de 1 mL e bureta de 25 mL.
Reagentes
Nitrato de prata 0,1 M 
Ácido nítrico
Procedimento – Pese 0,5 g da amostra. Transfira para um béquer de 400 mL, com auxílio de 
200 mL de água. Adicione 1 mL de ácido nítrico. Titule com solução de nitrato de prata 0,1 M.
Cálculo
V = nº de mL de solução de nitrato de prata 0,1 M gasto na titulação
f = fator da solução de nitrato de prata 0,1 M
P = nº de g da amostra
Referência bibliográfica
JOINT FAO/WHO EXPERT COMMITTEE ON FOOD ADDITTIVES. Guide to 
specifications for general notices, general analytical techniques, identifications tests, 
test solutions and other reference materials. Rome, 1991. p. 129.
Capítulo V - Aditivos
Métodos Físico-Químicos para Análise de Alimentos - 4ª Edição
1ª Edição Digital
206 - IAL
095/IV Corantes artificiais – Determinação de corantes subsidiários
Corantes subsidiários são definidos como aqueles corantes que são os subprodutos 
do processo de fabricação do corante principal. Qualquer outro corante, que não o principal 
e seus subsidiários, são considerados adulterantes cuja presença é usualmente detectada em 
cromatogramas usados para determinar corantes subsidiários. Os corantes subsidiários são 
separados do corante principal por cromatografia ascendente em papel.
Material
Balança analítica, papel Whatman nº 1, sílica gel, balão volumétrico de 100 mL, cuba 
cromatográfica e microsseringas de 5 ou 10 μL.
Reagentes
Hidróxido de amônio 
Citrato trissódico
n-Butanol 
Álcool 
2-Butanona
Acetona
Ácido acético glacial 
Acetonitrila 
Álcool isoamílico 
Metil etil cetona 
Fases móveis:
1. água-amônia-citrato trissódico (95:5:2)
2. n-butanol-água-álcool-hidróxido de amônio (600:264:135:6)
3. 2-butanona-acetona-água (7:3:3)
4. 2-butanona-acetona-água-hidróxido de amônio (700:300:300:2)
5. 2-butanona-acetona-água-hidróxido de amônio (700:160:300:2)
6. n-butanol-ácido acético glacial-água (4:1:5). Agite por 2 minutos, deixe separar as 
camadas e use a camada superior como fase móvel 
7. acetonitrila-álcool isoamílico-metil etil cetona-água-hidróxido de amônio (50:50:15:10:5) 
Procedimento – Prepare soluções aquosas das amostras a 1% m/v. Dilua em água de acordo 
com o limite legal permitido para cada corante. Sobre uma folha de papel Whatman nº 1 ou 
sobre a placa de sílica gel no caso do corante verde sólido, aplique, com uma microsseringa, 
2 μL das soluções de corantes a 1% e as respectivas soluções diluídas, conforme o limite 
IAL - 207
legal estabelecido para corantes subsidiários. Desenvolva o cromatograma com o solvente 
apropriado para cada corante, conforme Tabela 4.
Tabela 4 – Altura ou tempo necessário para o desenvolvimento de corantes em respectivas 
fases móveis
Corante
Fase 
móvel
Altura ou tempo
Vermelho 40 4 17 cm
Bordeaux S (Amaranto) 3 17 cm
Azul-brilhante 4 20 h
Eritrosina 5 17 cm
Verde-sólido 7 CCD - sílica gel até o topo da placa
Azul-indigotina 3 17 cm
Amarelo-tartrazina 4 12 cm
Amarelo-crepúsculo 4 17 cm
Azorrubina (carmoisina) 4 17 cm
Azul-patente 2 17 cm
Ponceau 4R 3 17 cm
A mancha do corante subsidiário da solução a 1% deve ser menor do que a mancha prin-
cipal da solução diluída.
Referências bibliográficas
JOINT FAO/WHO EXPERT COMMITTEE ON FOOD ADDITTIVES. Guide to 
specifications for general notices, general analytical techniques, identification tests, 
test solutions and other reference materials. Rome, 1991. p.122. 
JOINT FAO/WHO EXPERT COMMITTEE ON FOOD ADDITTIVES. Guide to 
specifications for general notices, general analytical techniques, identification tests, 
test solutions and other reference materials . Rome , 1992. p. 37, 71, 176, 219, 641, 
785, 1051, 1141, 1463, 1482.
096/IV Corantes artificiais – Determinação quantitativa de misturas de amarelo-cre-
púsculo e bordeaux S 
Este método espectrofotométrico é aplicado para determinação das misturas dos

Outros materiais