Buscar

conc6-140817072141-phpapp01

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 68 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 68 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 68 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Métodos de Programação da 
Produção
Planejamento e Controle da Produção 
2
Compras
Pedidos de 
Compras
Planejamento Estratégico da 
Produção
Plano de 
Produção
Planejamento-mestre da 
Produção
Plano-mestre 
de Produção
Programação da Produção
Administração dos Estoques
Seqüenciamento
Emissão e Liberação
Ordens de 
Compras
Ordens de 
Fabricação
Ordens de 
Montagem
Fabricação e MontagemEstoques
Clientes
Marketing
Engenharia
Fornecedores
A
co
m
p
a
n
h
a
m
e
n
to
 e
 C
o
n
tro
le
 d
a
 P
ro
d
u
çã
o
Previsão de 
Vendas
Pedidos em 
Carteira
Estrutura do 
Produto
Roteiro de 
Fabricação
A
va
lia
çã
o
 d
e
 D
e
se
m
p
e
n
h
o
Fluxo de Informações e PCP
3
 A partir do sistema de gestão de estoques serão 
geradas a cada período de programação as 
necessidades de compras, fabricação e montagem 
dos itens para atender ao PMP
 Convencionalmente, as ordens de compras, uma vez 
geradas, são encaminhadas para o setor encarregado das 
compras e saem da esfera de ação do PCP
 Já as necessidades de fabricação e de montagem precisam 
normalmente passar pôr um sistema produtivo com limitações 
de capacidade. A adequação do programa gerado aos 
recursos disponíveis (máquinas, homens, instalações, etc.) é 
função do seqüenciamento 
Programação da Produção
4
Emissão de Ordens
 A programação materializa-se através da emissão de 
ordens. Estas ordens são de dois tipos: ordens de produção 
(fabricação e montagem) e ordens de compra.
 As ordens devem conter as seguintes informações:
 A) Especificação de item a ser produzido ou comprado.
 B) Quantidade.
 C) Prazo de entrega ou conclusão da produção.
 Cada sistema de produção (Tradicional, MRP ou Just-in-
time) possui particularidades e características próprias para 
a programação.
5
Emissão e Liberação
de Ordens
 A última atividade do PCP antes do início da produção 
propriamente dita, consiste na emissão e liberação 
das ordens de fabricação, montagem e compras, que 
permitirão aos diversos setores operacionais da 
empresa executarem suas atividades de forma 
coordenada no sentido de atender determinado PMP.
6
Emissão e Liberação
de Ordens
 Até serem emitidas e liberadas, as ordens são 
apenas planos que se pretendem cumprir. 
 Uma vez formalizada a documentação e 
encaminhada aos seus executores, estas ordens 
entram na esfera operacional do processo produtivo.
 Ações são tomadas e recursos alocados para a sua 
efetivação, fazendo com que seja difícil e antieconômico 
mudanças nesta programação.
7
Emissão e Liberação
de Ordens
 As ordens de compra são encaminhadas ao 
Departamento de Compras;
 As ordens de fabricação e montagem, antes de 
liberadas, necessitam ser verificadas quanto a 
disponibilidade de recursos humanos, máquinas e 
materiais.
8
Programação da Produção
(ou programação das ordens de produção)
Programar é a atividade que determina quando cada tarefa necessária a 
execução de um produto ou serviço deve ser iniciada e concluída. 
a. Princípio da duração ótima da tarefa: A programação tende a atingir sua 
máxima eficiência quando a duração das tarefas é pequena e todas as tarefas 
são da mesma ordem de grandeza.
b. Princípio do plano de produção ótimo: A programação tende a atingir sua 
máxima eficiência quando o trabalho é planejado de forma que a carga de 
todos os centros produtivos seja igual.
c. Princípio da seqüência ótima de operações: A programação tende a atingir 
sua máxima eficiência quando o trabalho é planejado de forma que os centros 
produtivos sejam normalmente usados na mesma seqüência. 
Princípios da programação
9
Demanda/Volume de ProduçãoAlta Baixa
Flexibilidade/Variedade de itensBaixa Alta
Lead Time ProdutivoBaixo Alto
CustosBaixo Alto
Contínuos
Massa
Repetitivos 
em Lotes
Sob 
Encomenda
Demanda/Volume de ProduçãoAlta Baixa
Flexibilidade/Variedade de itensBaixa Alta
Lead Time ProdutivoBaixo Alto
CustosBaixo Alto
Contínuos
Massa
Repetitivos 
em Lotes
Sob 
Encomenda
Demanda/Volume de ProduçãoAlta Baixa
Flexibilidade/Variedade de itensBaixa Alta
Detalhamento da ProgramaçãoBaixo Alto
Contínuos
Massa
Repetitivos 
em Lotes
Sob 
Encomenda
Logística das MP/PA 
e PMP Define Tempo 
de Ciclo para 
balanceamento da 
linha
Explosão dos itens (MRP) e 
seqüenciamento das ordens por 
recurso
Garantia da data 
de entrega 
capacidade finita 
ou PERT/CPM)
Programação da Produção
(ou programação das ordens de produção)
10
Seqüenciamento das ordens 
de produção
 Como normalmente temos várias ordens de 
produção para serem processadas nos mesmos 
recursos é necessário estabelecer um 
seqüenciamento destas ordens.
 O seqüenciamento é a programação de um 
conjunto de ordens. 
 O seqüenciamento estabelece a ordem segundo 
a qual cada ordem de produção será executada 
levando em conta certos critérios.
11
Seqüenciamento nos 
Processos Contínuos
 Como os processos contínuos se propõem a 
produção de poucos itens, não existem 
problemas de seqüenciamento quanto a 
ordem de execução das atividades. 
 Os problemas de programação estão focados na 
definição da velocidade que será dada ao 
sistema produtivo para atender a determinada 
demanda estabelecida no PMP. 
12
Seqüenciamento nos Processos 
Repetitivos em Massa
 O trabalho da programação da produção nos 
processos em massa consiste em buscar um 
ritmo equilibrado entre os vários postos de 
trabalho conhecido como "balanceamento" de 
linha, de forma a atender economicamente uma 
taxa de demanda, expressa em termos de 
"tempo de ciclo" de trabalho. 
13
 
Balanceamento de Linhas de 
Montagem
 
 TC = TD/D
 
MP PA 
 
 
Componentes
ROP = TC
ROP = TC
ROP = TC ROP = TC ROP = TC
ROP = TC ROP = TC ROP = TC
•Montadores disposto seqüencialmente em postos de trabalhos
•Conjunto de operações-padrão ou rotina de operações-padrão (ROP), 
•Limitado a um tempo de ciclo (TC), 
•Para cada TC um produto acabado seja montado. 
14
Balanceamento de Linhas de 
Montagem
Montagem da Placa de Bornes e Caixa de Ligação – Operações-padrão
Ordem Operações-padrão Tempo (min.)
1 Soltar cabos 0,132
2 Fazer ligação na placa de bornes 0,648
3 Colocar ponte de ligação e porcas com arruelas 0,527
4 Pegar parafusadeira e fixar porcas na placa de bornes 0,156
5 Dobrar cabos com terminais 0,196
6 Pegar caixa de ligação e posicionar na bancada 0,102
7 Posicionar e prensar aterramento na caixa de ligação 0,074
8 Posicionar parafusos na caixa de ligação 0,351
9 Pegar caixa de ligação e posicionar sobre o motor 0,345
10 Pegar parafusadeira e fixar caixa de ligação 0,370
11 Enrolar duas pontas do cabo da resistência 0,207
12 Pegar estanhador e estanhar cabo da resistência 0,415
13 Cortar conector e retirar rebarba 0,593
14 Conectar cabos da resistência no conector 0,611
15 Parafusar conector na caixa de ligação 0,590
16 Conectar cabos do termostato no conector 1,030
Tempo Total 6,347
15
Balanceamento de Linhas de 
Montagem
TC
TD
CP =
CP = Capacidade de produção em unidades por dia
TC = Tempo de ciclo em minutos por unidade
TD = Tempo disponível para produção em minutos por dia
O tempo da operação gargalo (operação 16) é importante, pois define para o 
PCP o limite de capacidade de produção (CP) do centro de trabalho
16
Balanceamento de Linhas de 
Montagem
TC
TD
CP =
Está se admitindo que a linha é focada a uma família de motores, ou seja, não 
há setups, e que todas as operações-padrão são operações manuais, ou seja, 
exigem a presença do operador para executá-las, e está se colocando vários 
operadores na linha, sendo que um deles dedicado apenas à operação 16, 
admitindo-se ainda que esse operador precise pegar e devolver o item a 
bancada, consumindo mais 0,100 minutos 
unid/dia 
min/unid 
min/dia 
CP 424
130,1
480 ≈=
Operação-padrão gargalo = 1,030 minutos
Deslocamentos = 0,100 minutos
TC = 1,130 minutos por unidade
17
Balanceamento de Linhas de 
Montagem
D
TD
TC =
TD
D
TX =
TC = Tempo de ciclo em minutos por unidade
TX =Taxa de produção em unidades por minuto
TD = Tempo disponível para produção em minutos por dia
D = Demanda média em unidades por dia
Admitindo-se que a demanda média esperada por dia seja de 200 unidades 
desses motores, a linha de montagem tem que ser balanceada para um TC de 
2,40 minutos por unidade, o que equivale a uma TX de 0,416 unidades por 
minutos 
min/unid 
unid/dia 
min/dia 
TC 40,2
200
480 ==
unid/min 
min/dia 
unid/dia 
TX 416,0
480
200 ≈=
18
Balanceamento de Linhas de 
Montagem
Ordem T min ROP T.op. T.mov. Total
1 0,132
2 0,648
3 0,527
4 0,156
5 0,196
6 0,102
7 0,074
8 0,351
9 0,345
10 0,370
11 0,207
12 0,415
13 0,593
14 0,611
15 0,590 Posto 5 0,590 0,100 0,690
16 1,030 Posto 6 1,030 0,100 1,130
Posto 1
Posto 2
Posto 3
Posto 4 0,100
0,992
1,3041,204
1,224 0,100 1,324
0,100 1,092
1,307 0,100 1,407
Operação-padrão Linha Retilínea
Para TC 1,5 min (320 unid/dia)
Está se admitindo que cada posto de trabalho 
tenha que pegar a carcaça do motor (0,050 min) 
na bancada e, após as operações-padrão, 
recolocá-la (0,050 min) para o próximo operador 
19
Atividade: Balanceamento de 
uma Linha de Montagem
 Admitindo-se que um produto é montado em uma linha que trabalha 
480 minutos por dia (8 horas) a partir de seis operações seqüenciais, 
com os seguintes tempos unitários:
Operação 1 Operação 2 Operação 3 Operação 4 Operação 5 Operação 6 
 0,8 min. 1,0 min. 0,5 min. 1,0 min. 0,5 min. 0,7 min.
CP=
TP
TC
CP = Capacidade de produção por dia;
TP = Tempo disponível para a produção por dia;
TC = Tempo de ciclo em minutos por unidade;
D = Demanda esperada por dia.
TC
TP
D
=
Calcule a capacidade máxima teórica de produção da linha e o número de 
postos de trabalho para uma produção de 240 unidades.
20
Balanceamento de Fluxo de 
produção
A
C
H
B
F
E
G
D
I
0,2
0,4
0,7
0,6
0,5
0,4
0,1
0,3
0,6
21
Balanceamento de Fluxo de 
produção
A
C H
B
F
E
G
D
I
0,2
0,4
0,7
0,6
0,5
0,4 0,1
0,3
0,6
1° Passo – Calcular o tempo total necessário para a produção: 
Tempo total de Produção = 0,2 + 0,6 + 0,4 + 0,7 + 0,3 + 0,5 + 0,6 + 0,1+ 0,4 = 3,80
2° Passo – Calcular a quantidade de operadores / estágios necessários
Qtde. Operadores = Tempo de produção / tempo de ciclo = 3,80Minutos / 1 min = 
Qtde. Operadores = 3,8 ~ 4 operadores
22
3° Passo – Balancear o fluxo usando 4 operadores
Operador Tarefa Tempo 1 Tempo 2 Tempo 3 Tempo Total
1 A e B 0,2 0,6 0,8
2 C e F e H 0,4 0,5 0,1 1,0
3 D e E 0,7 0,3 1,0
4 G e I 0,6 0,4 1,0
Balanceamento de Fluxo de 
produção
23
Atividade: Balanceamento de um 
fluxo de produção.
A
C
HB
F
E
G
D
3,0
1,0
4,0
3,0
5,0
9,0
3,0
2,0
Faça o balanceamento do fluxo de produção abaixo para uma 
produção de 12 unidades de produto por hora.
24
Seqüenciamento na Produção 
em lotes
 Quanto à escolha da ordem a ser processada
 regras normalmente baseadas nas características do item ou lote a ser 
produzido, como, por exemplo, tempo da operação-padrão, cobertura 
do estoque, importância do cliente, etc.
 Quanto à escolha do recurso a ser utilizado
 o foco das regras de seqüenciamento é o recurso, como, por exemplo, 
tempo de setup, taxa de produção, capacidade disponível, etc.
Ordem 1
Ordem 2
Ordem n
Fila de Espera
Regras para
escolha da
ordem
Ordem
Escolhida
Regras para
escolha do
recurso
Recurso 1
Recurso 2
Recurso m
Grupo de Recursos
Recurso
Escolhido
Decisão 1 Decisão 2
25
Seqüenciamento
 O Seqüenciamento tem por objetivo minimizar 
o tempo total exigido para executar um 
conjunto de tarefas ou satisfazer um prazo 
previsto para a entrega de um produto, ou 
mesmo minimizar os custos de produção. 
 A seqüência de produção deve ser estabelecida 
tendo em vista os seguintes objetivos:
 - Cumprir datas previstas de término
 - Reduzir custos de preparação
 - Otimizar a utilização das máquinas
26
Cronograma de Fabricação 
dos Produtos 
 O cronograma de fabricação do produto mostra contra uma 
escala de tempo a seqüência de atividades pela qual os 
produtos acabados são fabricados.
 O tempo de cada atividade inclui não só o tempo para processar 
o trabalho, mas também o tempo de espera antes e depois da 
operação.
 O cronograma de fabricação do produto têm basicamente dois 
objetivos:
 (1) Estabelecer como uma política da empresa, quais 
atividades precisam ser iniciadas antes do recebimento do 
pedido do cliente para o produto ao qual elas se relacionam.
 (2) Prover uma base para a programação das datas de 
começo e fim de cada atividade, contra as quais se possa iniciar 
a atividade e testar o seu progresso.
27
1 2 3 4 5 6
Projeto, fabricação e montagem
Transporte Espera Preparação Operação Espera
Atividade 3
Cronograma de Fabricação 
dos Produtos
As atividade consideradas podem envolver, além das de produção, as de projeto, 
preparação de planos e programas, processamento de dados, emissão de ordens, 
compra e recebimento de itens, e qualquer outra atividade relevante.
28
Seqüenciamento e Cronograma de 
Fabricação
Espera Processamento Inspeção Transporte
P1E1 I1 T1
Lead Time
Cada Processo ou Centro de Trabalho
P3E3 I3 T3P2E2 I2 T2 PnEn In Tn
Para Programação da Produção
Nas Filas de Entrada dos CT
Para Conclusão do Lote
+
+
Pode chagar a 80% 
do LT da Cadeia de 
Valor
Tem relação direta 
com o seqüenciamento
29
Seqüenciamento na Produção em 
Lotes
Estoques PC e MP 
Estoques de PA
SM 
SM 
SM SM 
 
SM PA 
SM PC 
SM MP 
SM PC 
TC TC 
TC 
TC 
TC 
Layout Departamental
Seqüenciamento por Máquina
Layout Celular
Seqüenciamento por Célula
30
 O gráfico de Gantt é um instrumento para a visualização de 
um programa de produção, auxiliando na análise de 
diferentes alternativas de seqüenciamento deste programa. 
 O Gráfico de GANTT é uma tabela de dupla entrada na qual 
listam-se os fatores de produção na vertical e uma escala de 
tempo na no eixo horizontal.
Gráfico de Gantt
31
Com uma simbologia adequada demarcamos ao longo das linhas um 
segmento proporcional ao intervalo de tempo necessário para cada 
atividade, de modo que não haja mais de uma atividade simultaneamente 
designadas para o mesmo fator de produção e que seja condizente com a 
seqüência das atividades do cronograma de fabricação do produto. 
Exemplo de uma gráfico de 
GANTT
Seção de Usinagem 
Trabalhos 02/11 03/11 04/11 05/11 06/11 09/11 10/11 
 OP 043 
Torno AB1 FREZA GT3 Montagem 
 OP 047 
Freza GT3 Furadeira T5 
 OP050 
 Freza GT2 
 OP045 
 Torno AB1 Freza GT2 
 OP046 
Montagem 
 OP052 
Torno AB 2 Freza GT2 
 OP044 
Montagem 
 
32
Problemas de Seqüenciamento
Os problemas de seqüenciamento podem ser classificados em 
dois grupos:
1. N tarefas processadas em M diferentes máquinas.
2. M máquinas para uma lista de tarefas (cada vez que 
uma máquina completa uma tarefa tem-se que decidir 
sobre a próxima tarefa da lista. A lista de tarefas muda 
com novas encomendas)
As hipóteses básicas para formulação do problema são:
 As ordens de produção (OP) devem seguir a seqüência de A para B, 
isto é, nenhuma das OP tem a primeira operação na máquina B. 
 Os tempos para passar da máquina A para a máquina B estão 
incluídos no tempo de processamento.
 Não há prioridades, ou seja, as ordens podem ser programadas em 
qualquer seqüência.
33
N Tarefas através de M Máquinas
Cada trabalho obedece uma ordem de processamento A, B, 
...,N (onde A, B,...,N representam as máquinas através dos 
quais a tarefa tem que passar). 
O problema é encontrar uma seqüência de processamento 
tal que o tempo total gasto para efetuar o conjunto de tarefas 
seja o mínimo possível. 
Atualmente só existem soluções ótimas para os três casos 
especiais:
o N trabalhos e 2 máquinas
o N trabalhos e 3 máquinas
o 2 trabalhos e M máquinas
Para problemas que não admitem uma solução ótima 
emprega-seas Regras de Seqüenciamento.
34
Regras de Seqüenciamento
 As regras de seqüenciamento são heurísticas usadas 
para selecionar qual dos lotes esperando na fila de 
um grupo de recursos terá prioridade de 
processamento, bem como qual recurso deste grupo 
será carregado com esta ordem. 
 Geralmente, as informações mais importantes estão 
relacionadas com o tempo de processamento (lead 
time) e a data de entrega.
 As regras para definição da seqüência das 
atividades não garantem a obtenção da 
seqüência ótima, mas ajudam estabelecer 
prioridades na execução das tarefas, são elas:
35
Regras de Seqüenciamento
 Primeiro as rotinas com maior número de operações.
 Primeiro as rotinas com maior soma de tempos de operação.
 Primeiro as rotinas com a primeira operação mais curta 
seguida pela operação mais longa.
 Programar em seqüência todas as rotinas que seguem fluxo 
de produção semelhantes.
 Programar por último as rotinas com uma só operação.
 Programar por último as rotinas com duas operações em que 
a última é mais curta que a primeira.
36
Regras de Seqüenciamento
Sigla Especificação Definição 
PEPS Primeira que entra primeira 
que sai 
Os lotes serão processados de acordo com sua chegada no recurso. 
MTP Menor tempo de 
processamento 
Os lotes serão processados de acordo com os menores tempos de 
processamento no recurso. 
MDE Menor data de entrega Os lotes serão processados de acordo com as menores datas de 
entrega. 
IPI Índice de prioridade Os lotes serão processados de acordo com o valor da prioridade 
atribuída ao cliente ou ao produto. 
ICR Índice crítico Os lotes serão processados de acordo com o menor valor de: 
 
IFO Índice de folga Os lotes serão processados de acordo com o menor valor de: 
 
IFA Índice de falta Os lotes serão processados de acordo com o menor valor de: 
quantidade em estoque / taxa de demanda 
 
37
Características das Regras de 
Seqüenciamento
Simplicidade: As regras devem ser simples e rápidas de entender e 
aplicar.
Transparência: A lógica por trás das regras deve estar clara, caso 
contrário o usuário não verá sentido em aplicá-la.
Interatividade: Devem facilitar a comunicação entre os agentes do 
processo produtivo.
Gerar prioridades palpáveis: As regras aplicadas devem gerar prioridades 
de fácil interpretação. 
Facilitar o processo de avaliação: As regras de seqüenciamento devem 
promover, simultaneamente à programação, a avaliação de desempenho 
de utilização dos recursos produtivos. 
38
Exemplo de Seqüenciamento
Ordem de 
Produção 
(OP)
Tempo de Processamento
Máquina A Máquina B
1 3 6
2 6 2
3 7 4
4 5 3
5 4 7
Gráfico de GANTT – Primeiro que entra é o primeiro que sai.
Seção de Usinagem
Máquinas 5 10 15 20 25 30 35
A OP 01- 3 OP 02 - 6 OP03 – 7 OP 04 - 5 OP 05 - 4
B OP-01 - 6 OP
02 - 
2
OP03 - 4 OP04 - 
3
OP05 - 7 32 h
39
Seqüenciamento para o caso 
de N trabalhos e 2 máquinas
 A Regra de Johnson é um algoritmo minimiza o 
leadtime total de um conjunto de ordens processadas 
em dois recursos sucessivos (N trabalhos em 2 
recursos).
 O algoritmo de Johnson consiste em:
1. Selecionar o menor tempo entre todos os tempos de 
processamento da lista de ordens a serem programadas nas 
máquinas A (1°máquina) e B (2° máquina), no caso de empate 
escolha qualquer um;
2. Se o tempo escolhido for na máquina A, programe esta ordem 
no início. Se o tempo escolhido for na máquina B, programe 
esta ordem para o final.
3. Elimine a ordem escolhida da lista de ordens a serem 
programadas e retorne ao passo 1 até programar todas as 
ordens.
40
Regra de Johnson
 A primeira vista o caso de duas máquinas parece sem importância, 
entretanto em geral, tem-se poucas máquinas de grande custo, a 
qual desejamos utilizar o máximo. 
 Aplicando-se a regra de JOHNSON para o exemplo anterior o 
gráfico de GANTT desta seqüência mostra que a duração deste 
programa será de 27 horas, a qual é a mínima possível 
Seção de Usinagem 
Máquinas 5 10 15 20 25 30 35 
A OP 01- 3 OP 05 - 
4 
OP 03 - 7 OP 04 - 5 OP 02 - 6 
B OP-01 - 6 OP 05 - 7 OP 03 - 
4 
OP 04 - 
3 
 OP 02 
- 2 27 h 
 
41
Seqüenciamento para o caso de N 
Trabalhos Através de 3 Máquinas 
Não existe nenhuma solução geral para o caso de 3 máquinas (A, B e C) 
com uma ordem preestabelecida (A -> B -> C) para cada trabalho e sem 
alteração nas ordens de produção. Entretanto, se qualquer uma das 
duas condições abaixo for satisfeita haverá solução.
 O menor tempo de processamento na máquina A ser maior ou igual 
ao maior tempo de processamento na máquina B.
 O menor tempo de processamento da máquina C ser maior ou igual 
ao maior tempo de processamento da máquina B.
O método consiste em substituir este problema por um problema 
equivalente envolvendo N trabalhos e 2 máquinas, ou seja, criar duas 
máquinas fictícias G e H, cujo tempo de processamento da máquina G 
seria a soma dos tempos de processamento das máquinas A e B, e o 
tempo de processamento da máquina H seria a soma dos tempos de 
processamento das máquinas B e C. 
42
Exemplo para o Caso de N 
Trabalhos Através de 3 Máquinas
Ordem de 
Produção
Tempo de Processamento
Máquina A Máquina B Máquina C
1 4 5 8
2 9 6 10
3 8 2 6
4 6 3 7
5 5 5 11
Suponha-se o seguinte exemplo: tem-se 5 trabalhos, cada um dos quais 
devendo passar pelas máquinas A, B e C na ordem A->B->C. Os tempos de 
processamento são dados abaixo:
43
Exemplo para o Caso de N 
Trabalhos Através de 3 Máquinas
Tem-se que Min Ai = 4, Máx. Bi = 6 e Min Ci = 6.
1a. Condição Min Ai >= Max Bi --> não satisfeita
2a. Condição Min Ci >= Max Bi --> satisfeita
Ordem de Produção Tempo de Processamento
Máquina G Máquina H
1 9 13
2 15 16
3 10 8
4 9 10
5 9 15
Então podemos transformar este problema num equivalente de N trabalhos e 2 
máquinas. Os tempos de processamento são dados abaixo:
44
Exemplo para o Caso de N 
Trabalhos Através de 3 Máquinas
5 -> 4 -> 1 -> 2 -> 3
1 -> 4 -> 5 -> 2 -> 3
1 -> 5 -> 4 -> 2 -> 3
4 -> 5 -> 1 -> 2 -> 3
4 -> 1 -> 5 -> 2 -> 3
5 -> 1 -> 4 -> 2 -> 3
Neste caso, o número de seqüências ótimas (6) deve-se ao fato de haver ocorrido 
muitos empates. 
Aplicando-se a regra de JOHSON, obtém-se as seguintes seqüências:
45
Atividade: Aplicação das 
Regras de Seqüenciamento
 Cinco ordens de fabricação precisam ser estampadas na 
máquina A e, em seguida, usinadas na máquina B. Os tempos 
de processamento (incluindo os setups), as datas de entrega 
(em número de horas a partir da programação) e as prioridades 
atribuídas a cada ordem são apresentados na tabela abaixo. 
Ordens Processamento (horas) Entrega
(horas)
Prioridade
Máquina A Máquina B
OF1 5 5 15 4
OF2 8 6 20 1
OF3 4 5 13 3
OF4 2 4 10 2
OF5 4 3 9 5
 Use as regras: PEPS, MTP, MDE,IPI, ICR, IFO e Johnson.
 Calcule os tempos totais de processamento para cada regra.
46
Seqüenciamento em 
Processos por Projetos
 Os processos por projeto são aqueles que buscam atender a 
demanda específica de um determinado cliente.
 O PCP de processos por projetos busca seqüenciar as 
diferentes atividades do projeto de forma que cada uma 
delas tenha seu início e conclusão encadeados com as 
demais atividades que estarão ocorrendo em seqüência e/ou 
paralelo com a mesma.
 A técnica mais empregada para planejar, seqüenciar e 
acompanhar projetos é a técnica conhecida como 
PERT/CPM (Program Evaluation and Review Technique / 
Critical Path Method) 
47
Seqüenciamento em 
Processos por Projetos
 Esta técnica permite que os gestores do projeto tenham:
 Uma visão gráfica das atividades que compõem o projeto;
 Uma estimativa de quanto tempo o projeto consumirá;
 Uma visão de quais atividades são críticas para o atendimento 
do prazo de conclusão do projeto;
 Uma visão de quanto tempo de folga dispomos nas atividades 
não-críticas.
48
A rede PERT/CPM
 Uma rede PERT/CPM é formada por um conjunto interligado de 
setas e nós.
 As setas representam as atividades do projeto que consomem 
determinados recursos (mão-de-obra,máquinas, etc.) e/ou 
tempo, já os nós representam o momento de início e fim das 
atividades, os quais são chamados de eventos.
 Os eventos são pontos no tempo (nós) que demarcam o 
projeto e, diferente das atividades, não consomem recursos nem 
tempo.
 Os nós são numerados da esquerda para a direita e de cima 
para baixo. O nome da atividade aparece em cima da seta e sua 
duração em baixo. A direção da seta caracteriza o sentido de 
execução da atividade. 
49
A rede PERT/CPM
Atividade Dependência Nós Duração
A - 1-2 10
B - 1-3 6
C A 2-4 7
D B 3-4 5
E B 3-5 9
F C e D 4-6 5
G E 5-6 4
1
2
3
4
5
6
A
B
C
D
E
F
G
10
6
7
5
9
5
4
Cada ligação entre o nó 
inicial e o final é 
chamada de caminho.
50
A rede PERT/CPM
K
X
Y
W
X
Y
W
Fantasma
K
W
X
Y
L
Fantasma
 As atividades fantasmas não consomem 
tempo nem recursos.
51
Cálculo dos tempos da rede
 Para cada nó ou evento de uma rede que representa um projeto 
podemos calcular dois tempos que definirão os limites no tempo 
que as atividades que partem deste evento dispõem para serem 
iniciadas. 
 O Cedo de um evento é o tempo necessário para que o evento 
seja atingido desde que não haja atrasos imprevistos nas 
atividades antecedentes deste evento. 
 O Tarde de um evento é a última data de início das atividades 
que partem deste evento de forma a não atrasar a conclusão do 
projeto. 
52
Cálculo dos tempos da rede
1
2
3
4
5
6
A
B
C
D
E
F
G
10
6
7
5
9
5
4
0
10
6 15
17
22
22
17
189
10
0
Cedo
Tarde
53
Cálculo dos tempos da rede
 Podemos definir para cada atividade integrante de um projeto 
quatro tempos que se referem as datas de início e término da 
atividade, quais sejam:
 PDI - Primeira data de início;
 PDT - Primeira data de término;
 UDI - Última data de início;
 UDT - Última data de término.
 O tempo disponível (TD) é o intervalo de tempo que existe entre a 
primeira data de início (PDI) e a última data de término (UDT) de 
uma atividade.
 O tempo disponível (TD) é o maior intervalo de tempo que uma 
atividade dispõem para ser realizada, sem alterar o Cedo do evento 
inicial nem o Tarde do evento final.
54
Cálculo dos tempos da rede
 Para cada atividade constante de um projeto podemos definir 
quatro tipos de folgas:
 Folga Total (FT) = TD - t 
 Folga Livre (FL) = (Cedof - Cedoi) - t
 Folga Dependente (FD) = (Tardef - Tardei) - t
 Folga Independente (FI) = (Cedof - Tardei) - t)
Atividade t Cedo Tarde FT FL FD FI
i f i f
A 10 0 10 0 10 0 0 0 0
B 6 0 6 0 9 3 0 3 0
C 7 10 17 10 17 0 0 0 0
D 5 6 17 9 17 6 6 3 3
E 9 6 15 9 18 3 0 0 0
F 5 17 22 17 22 0 0 0 0
G 4 15 22 18 22 3 3 0 0
55
Caminho Crítico
 O caminho crítico é a seqüência de atividades que possuem 
folga total nula e que determina o tempo total de duração do 
projeto. 
 As atividades pertencentes ao caminho crítico são chamadas de 
atividades críticas.
 A identificação do caminho crítico de um projeto é importe 
para o gerenciamento do mesmo, pois o PCP pode concentrar 
seus esforços para que estas atividades tenham prioridade na 
alocação dos recursos produtivos. 
56
Seqüenciamento de Projetos 
PERT/CPM
Caminho Crítico
1
2 4
3 5
6
C
7
E
9
B
6
F
5
G
4
A
10
D
5
0
0
10
10
6
9
17
17
15
18
22
22
57
Atividade: Calcule o caminho 
crítico da rede abaixo.
1
2
3
5 8
7 10
4 6
9
7
6
3
8
8
8
8
5
1 3
1
2
1
A
L
D
C
G
E
F
J
I
H
B
N
K
58
 Quando as estimativas dos tempos das atividades estão sujeitas à 
variações aleatórias, se diz que as estimativas são probabilísticas, 
devendo incluir uma indicação do grau de variabilidade das 
previsões.
Tempos probabilísticos
t
t t t
e
p m o=
+ ⋅ +4
6
σ 2
2
6
=
−





t tp o
Tempo médio esperado
Variância
59
Tempos probabilísticos
 Podemos montar a rede e proceder os cálculos dos Cedos, Tardes, 
folgas e caminho crítico da mesma forma como foi feito no tópico 
anterior para os tempos determinísticos, considerando que o 
tempo médio esperado é o tempo da atividade.
 Dado que a média da soma de variáveis aleatórias é igual à 
soma das médias destas variáveis, podemos considerar como a 
variância total do projeto, a soma das variâncias das atividades 
que compõem o caminho crítico.
 Caso ocorram dois, ou mais, caminhos críticos, adotamos como 
variância total do projeto aquela que for menor. 
60
Seqüenciamento de Projetos 
PERT/CPM
Rede com Tempos Probabilísticos 
6
4 omp
e
ttt
t
+⋅+
=
2
2
6 




 −
= op
tt
σ
Atividade Dependência Nós Duração
to tm tp te σ2
A - 1-2 8 10 11 9,83 0,25
B - 1-3 4 6 7 5,83 0,25
C A 2-4 5 7 7,5 6,75 0,17
D B 3-4 4,5 5 6 5,08 0,06
E B 3-5 8 9 11 9,16 0,25
F C e D 4-6 4,5 5 6,5 5,16 0,11
G E 5-6 2 4 5 3,83 0,25
Quando as estimativas estão 
sujeitas a variações aleatórias, 
se diz que as estimativas são 
probabilísticas
Emprega-se a Função Beta
61
Tempos probabilísticos
Atividade Dependência Nós Duração
to tm tp te σ2
A - 1-2 8 10 11 9,83 0,25
B - 1-3 4 6 7 5,83 0,25
C A 2-4 5 7 7,5 6,75 0,17
D B 3-4 4,5 5 6 5,08 0,06
E B 3-5 8 9 11 9,16 0,25
F C e D 4-6 4,5 5 6,5 5,16 0,11
G E 5-6 2 4 5 3,83 0,25
1
2
3
4
5
6
A
B
C
D
E
F
G
9,83
5,83
6,75
5,08
9,16
5,16
3,83
16,58
21,74
21,74
16,58
14,99
17,91
5,83
8,75
9,83
9,83
0
0
Caminho Crítico
 A-C-F
Tempo Esperado
21,74
Variância
(0,25+0,17+0,11)
0,53
62
Seqüenciamento de Projetos 
PERT/CPM
Atividade t Cedo Tarde FT FL FD FI
i f i f
A 9,83 0 9,83 0 9,83 0 0 0 0
B 5,83 0 5,83 0 8,75 2,92 0 2,92 0
C 6,75 9,83 16,58 9,83 16,58 0 0 0 0
D 5,08 5,83 16,58 8,75 16,58 5,67 5,67 2,75 2,75
E 9,16 5,83 14,99 8,75 17,91 2,82 0 0 0
F 5,16 16,58 21,74 16,58 21,74 0 0 0 0
G 3,83 14,99 21,74 17,91 21,74 2,92 2,92 0 0
σ
totalttK
−
=
73,1
53,0
74,2123 =−=K
probabilidade de 95,6% 
do projeto ser concluído 
neste prazo 
1
2 4
3 5
6
C
6,75
E
9,16
B
5,83
F
5,16
G
3,83
A
9,83
D
5,08
0
0
9,83
9,83
5,83
8,75
16,58
16,58
14,99
17,91
21,74
21,74
63
Tempos probabilísticos
 Como os tempos de realização das atividades são 
probabilísticos, é importante podermos estimar qual a 
probabilidade que temos do projeto ficar concluído em 
determinado prazo. 
 Por exemplo, digamos que queremos saber qual a 
probabilidade deste projeto ser concluído em 23 
unidades de tempo, aplicando a fórmula achamos o 
valor de K = 1,73. Entrando com este valor na tabela 
da função de distribuição da curva normal, 
verificamos que existe uma probabilidade de 95,6% 
do projeto ser concluído neste prazo.
K
t ttotal=
−
σ
K = − =23 21 74
0 53
1 73
,
,
,
64
0 1 2 3 4 5 6 7 8 9
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.96640.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Distribuição Normal : Valores de P( Z < z ) = A(z)
Segunda decimal de z
P
a
r
t
e
 i
n
t
e
ir
a
 e
 p
r
im
e
ir
a
 d
e
c
im
a
l 
d
e
 z
65
Aceleração de uma rede
 As estimativas de tempo das atividades de um projeto estão 
relacionadas à quantidade de recursos (homens, equipamentos, 
dinheiro, etc.) alocados para cada atividade. 
 Geralmente, é possível adicionar, ou retirar, recursos alocados à 
uma atividade de forma a acelerar, ou desacelerar, seu prazo de 
conclusão. 
 Desta forma, uma vez montada a rede e identificado o caminho 
crítico, duas análises de custos podem ser realizadas:
 podemos analisar as folgas das atividades não críticas e 
verificar a possibilidade de reduzir os recursos, e 
conseqüentemente os custos, alocados as mesmas;
 podemos analisar as atividades do caminho crítico e verificar a 
possibilidade de reduzir, ou aumentar, o prazo de conclusão do 
projeto.
66
 Com relação à primeira análise, pode-se estudar a possibilidade de 
resseqüenciar os recursos alocados as atividades não críticas, dado que 
isto não afetaria o prazo de conclusão do projeto
 A atividade B teoricamente poderia ser desacelerada em 3 unidades de tempo, 
a atividade D em 6, a atividade E em 3, e a atividade G em 3
 Deve-se prestar atenção que ao se ir retirando as folgas das atividades não 
críticas, novos caminhos críticos surgirão
Seqüenciamento de Projetos 
PERT/CPM
1
2 4
3 5
6
C
7
E
9
B
6
F
5
G
4
A
10
D
5
0
0
10
10
6
9
17
17
15
18
22
22
67
Aceleração de uma rede
 O segundo tipo de análise, aceleração ou desaceleração do 
prazo de conclusão do projeto, é mais trabalhosa, pois envolve 
a relação custo-benefício que temos em alterar os prazos das 
atividades do caminho crítico, bem como a possibilidade de, em 
dado momento, outros caminhos se tornarem também críticos e 
entrarem nesta análise. 
Atividade Tempo Normal Tempo Acelerado Custo por Unidade
de Tempo Reduzida
A 10 8 $100
B 6 5 $600
C 7 6 $500
D 5 5 -
E 9 7 $300
F 5 2 $300
G 4 3 $500
68
Seqüenciamento de Projetos 
PERT/CPM
Aceleração da Rede 
Atividade Tempo Normal Tempo Acelerado Custo por Unidade 
de Tempo Reduzida
A 10 8 $100
B 6 5 $600
C 7 6 $500
D 5 5 -
E 9 7 $300
F 5 2 $300
G 4 3 $500
22 para 18
ACF 2 x A = $200
18 para 17
ACF 1 x F = $300
17 para 16
ACF 1 x F = $300
BEG 1x E = $300
22 para 16
Total = $1100

Outros materiais