Prévia do material em texto
25/10/2019 UNIASSELVI - Centro Universitário Leonardo Da Vinci - Portal do Aluno - Portal do Aluno - Grupo UNIASSELVI https://portaldoalunoead.uniasselvi.com.br/ava/notas/request_gabarito_n2.php 1/4 Acadêmico: Sue Ellen Aparecida Lino (2068794) Disciplina: Geometria Analítica e Álgebra Vetorial (EMC02) Avaliação: Avaliação II - Individual FLEX ( Cod.:455729) ( peso.:1,50) Prova: 13596545 Nota da Prova: 10,00 Legenda: Resposta Certa Sua Resposta Errada 1. Os problemas ligados ao conceito de autovalores, vistos em Álgebra Linear, permeiam muito mais do que estamos acostumados a verificar. Não são apenas as raízes do polinômio característico de uma transformação linear, mas sim o problema clássico de autovalores, que é absolutamente essencial para a compreensão e a análise de estruturas simples, tais como treliças, vigas, pórticos, placas etc., como também de sistemas estruturais mais complexos, dentre os quais podem ser citados os seguintes: pontes rodoviárias e ferroviárias, torres de aço de telecomunicações e de transmissão de energia, estádios de futebol, passarelas de pedestres, edificações residenciais, edifícios altos, plataformas off-shore etc. Sobre a soma dos autovalores da transformação apresentada a seguir, classifique V para as opções verdadeiras e F para as falsas e, em seguida, assinale a alternativa que apresenta a sequência CORRETA: a) V - V - F - V. b) V - F - F - F. c) F - F - V - F. d) F - V - F - F. 2. Com relação às transformações lineares, é importante determinar corretamente conceitos de núcleo, imagem, juntamente a suas respectivas dimensões para um entendimento teórico do problema encontrado. Baseado nisto, considere T, um operador linear de R³ em R³: T(x,y,z) = (z, x - y, -z) Assinale a alternativa CORRETA que melhor apresenta uma base para a imagem deste operador: a) [(0,1,0); (0,-1,0);(1,0,-1)]. b) [(1,0,0); (1,-1,0);(1,0,-1)]. c) [(0,1,0);(1,0,-1)]. d) [(0,-1,0);(1,0,-1)]. Parabéns! Você acertou a questão: Parabéns! Você acertou! 25/10/2019 UNIASSELVI - Centro Universitário Leonardo Da Vinci - Portal do Aluno - Portal do Aluno - Grupo UNIASSELVI https://portaldoalunoead.uniasselvi.com.br/ava/notas/request_gabarito_n2.php 2/4 3. Na construção civil é muito importante tomar cuidados com os chamados "estados limites". No projeto, usualmente devem ser considerados os estados limites últimos caracterizados por: a) perda de equilíbrio, global ou parcial, admitida a estrutura como um corpo rígido; b) ruptura ou deformação plástica excessiva dos materiais; c) transformação da estrutura, no todo ou emparte, em sistema hipostático; d) instabilidade por deformação; e) instabilidade dinâmica. A figura a seguir mostra a representação de um deslocamento horizontal excessivo em uma parede de alvenaria: a) T(x,y) = (-x,y). b) T(x,y) = (x,ky), com k>1. c) T(x,y) = (kx,y), com k>1. d) T(x,y) = k(x,y), com k > 1. 4. A noção comum de vetores como objetos com tamanho, direção e sentido, com as operações de adição e multiplicação por números reais forma a ideia básica de um espaço vetorial. Deste ponto de partida então, para definirmos um espaço vetorial, precisamos de um conjunto, uma operação de adição de elementos deste conjunto, e uma operação de multiplicação de escalares (por exemplo, números reais) por elementos deste conjunto. A respeito das propriedades dos espaços vetoriais, classifique V para as sentenças verdadeiras e F para as falsas: ( ) Os espaços vetoriais preservam as operações de soma e multiplicação por escalar. ( ) Os espaços vetoriais de podem ser imaginados como domínio de contradomínio de operações lineares. ( ) A base de um espaço é um conjunto LI que gera todos os elementos de um espaço. ( ) A base de um espaço é um conjunto LD que gera todos os elementos de um espaço. Assinale a alternativa que apresenta a sequência CORRETA: a) V - F - V - F. b) V - V - V - F. c) F - V - V - F. d) V - V - F - F. 5. O produto vetorial é de grande utilidade para a física para analisar o comportamento no eletromagnetismo, mecânica de corpos rígidos e dos fluidos. Na matemática, o produto vetorial aplica-se a vetores em R³ resolvendo problemas na geometria, no qual o produto entre dois vetores tem como solução um novo vetor, simultaneamente ortogonal aos outros dois. Baseado nisto, quanto ao produto vetorial (u x v) entre os vetores u = (0,2,2) e v = (3,0,2), analise as opções a seguir: I- u x v = (4,6,-6). II- u x v = (0,6,4). III- u x v = (0,-6,6). IV- u x v = (-4,6,-6). Assinale a alternativa CORRETA: a) Somente a opção III está correta. b) Somente a opção IV está correta. 25/10/2019 UNIASSELVI - Centro Universitário Leonardo Da Vinci - Portal do Aluno - Portal do Aluno - Grupo UNIASSELVI https://portaldoalunoead.uniasselvi.com.br/ava/notas/request_gabarito_n2.php 3/4 c) Somente a opção II está correta. d) Somente a opção I está correta. 6. Uma das aplicações mais práticas do conceito de produto vetorial é o cálculo de área. Por exemplo, temos a área do paralelogramo formada pela unificação de dois vetores, que é o módulo (ou norma) do produto vetorial entre os dois. Já para o caso da área do triângulo, bastaria dividir este resultado por dois, pois a área do triângulo é a metade da área do paralelogramo. Baseado nisto, determine a área do triângulo formado pelos vetores u = (2,2,1) e v = (1,1,2). Analise as opções a seguir: I- Raiz de 3. II- 9. III- Raiz de 18. IV- 6. Assinale a alternativa CORRETA: a) Somente a opção II está correta. b) Somente a opção IV está correta. c) Somente a opção I está correta. d) Somente a opção III está correta. 7. Ao falar das aplicações do cálculo dos autovetores e autovalores de uma matriz, podemos colocar as soluções de equações diferenciais que são de interesse físico, como as frequências naturais de vibração de um instrumento musical, ou de uma simples corda esticada. No entanto, anteriormente a isto, devemos compreender corretamente este conceito para que as futuras aplicações sejam corretas. Assinale a alternativa CORRETA que apresenta o conceito de autovetor de transformação: a) É um número real que anula a transformação. b) É um vetor que após aplicado à transformação resulta num múltiplo de si mesmo. c) É um vetor que gera uma base do núcleo da transformação. d) É um número real que multiplica o vetor após a transformação. 8. Pela definição de vetor, sabemos que dados dois pontos e um sentido podemos determinar o vetor que liga estes dois pontos e possui a direção indicada. Através deste processo podemos mais tarde ter um apoio no estudo das retas e planos no espaço. Baseado nisso, assinale a alternativa CORRETA que apresenta o vetor u definido pelos pontos A = (1,0,-3) e B = (2,4,1), no sentido de B para A: a) u = (-1,-4,2). b) u = (-1,-4,-2). c) u = (0,-4,-4). d) u = (-1,-4,-4). 9. A norma ou módulo de um vetor trata da verificação de qual é o comprimento do vetor analisado. Fisicamente, o módulo do vetor informa qual a intensidade da grandeza física envolvida em um dado problema. Sendo assim, assinale a alternativa CORRETA que apresenta a norma (ou módulo) do vetor z = (-2,4): a) 2. b) Raiz de 10. c) 4. d) Raiz de 20. Parabéns! Você acertou a questão: Parabéns! Você acertou! 25/10/2019 UNIASSELVI - Centro Universitário Leonardo Da Vinci - Portal do Aluno - Portal do Aluno - Grupo UNIASSELVI https://portaldoalunoead.uniasselvi.com.br/ava/notas/request_gabarito_n2.php 4/4 10. Em Matemática, uma transformação linear é um tipo particular de função entre dois espaços vetoriais que preserva as operações de adição vetorial e multiplicação por escalar. Uma transformação linear também pode ser chamada de aplicação linear ou mapa linear. A respeito das transformações lineares, analise as opções a seguir: I- T(x,y) = (x² , y²). II- T (x,y) = (2x, - x + y). III- T (x,y) = (- x + y, x - 1). IV-T (x,y) = (x, x - y). Assinale a alternativa CORRETA: a) Somente a opção IV está correta. b) As opções II e IV estão corretas. c) As opções I e III estão corretas. d) As opções III e IV estão corretas. Parabéns! Você acertou a questão: Parabéns! Você acertou! Prova finalizada com 10 acertos e 0 questões erradas.