Prévia do material em texto
1. Pergunta 1 /1 O número de Euler é uma constante extremamente importante para muitas aplicações matemáticas. Esse número também é a base do logaritmo natural ou neperiano e possui diversas propriedades singulares. Tendo em vista essas informações e os conhecimentos acerca do número de Euler e do logaritmo natural, analise as afirmativas a seguir: I. As propriedades básicas que valem para um logaritmo de base 10 também valem para um logaritmo de base e. II. f(x)= e^x é uma função exponencial. III. ln(c) não está definido quando c é um número negativo. IV. ln(0) = 1. Está correto apenas o que se afirma em: Correta Ocultar outras opções 1. II e III. 2. II, III e IV. 3. I, III e IV. 4. I, II e III. 5. I e IV. 2. Pergunta 2 /1 O estudo dos diferentes tipos de funções é fundamental para um estudante de exatas. Saber suas particularidades, definições e significados multifacetados é como aprender palavras para um novo idioma, que no caso é o da matemática. As funções explícitas e implícitas compõem um pouco desse campo de estudo, e são fundamentais para o desenvolvimento do Cálculo. De acordo com essas informações e os conteúdos estudados sobre as definições e propriedades das funções implícitas e explícitas, analise as afirmativas a seguir. I. As funções explicitas são meramente algébricas. II. Existem funções implícitas que podem ser reescritas como funções explícitas. III. Uma função implícita pode ser representada por mais de uma função explícita. IV. está na forma de uma função implícita Está correto apenas o que se afirma em: Correta Ocultar outras opções 1. I, II e IV. 2. III e IV. 3. I, III e IV. 4. II e IV. 5. II, III e IV. 3. Pergunta 3 /1 As funções explícitas são aquelas que não possuem variáveis que estejam de forma isolada na expressão. O estudo delas de modo separado das demais é relevante, pois esse tipo de função é um impeditivo para o cálculo de algumas derivadas pelo método condicional. Porém, existem alguns fatores não muito claros quando se estuda essa categoria de expressão algébrica. Considerando essas informações e os conteúdos estudados sobre funções explícitas, implícitas e transcendentes, é correto afirmar que em alguns casos as funções explícitas sequer são funções, porque: Incorreta Ocultar outras opções 1. não respeitam as condições necessárias para serem chamadas de função, tal como a não atribuição de dois valores diferentes do contra domínio para um mesmo valor do domínio. 2. não são escritas na forma y=ax + b. 3. não são diferenciáveis. 4. impedem o cálculo das derivadas. 5. apresentam as condições necessárias para serem chamadas de função, porém, esse nome só é atribuído quando se escreve na forma explícita. 4. Pergunta 4 /1 O estudo do cálculo é importante em diversas áreas do conhecimento. Por exemplo, em física ele é utilizado para descrever as equações horárias de movimento, que são funções polinomiais. Considere que a derivada da equação horária do movimento, S’(t), é igual à equação horária da velocidade, v(t), e a derivada segunda da equação horária do movimento, S’’(t), é a equação horária da aceleração, a(t). De acordo essas informações e com seus conhecimentos sobre derivação, analise as afirmativas a seguir: I. Em movimentos nos quais a v(t) é uma função constante, S(t) também é constante. II. Para equações horárias de 2ºgrau, a’(t) = constante. III. Se S(t) = x³ + 2x² + 2, no instante 3s a velocidade é de 39m/s. IV. Em movimentos nos quais v(t) é uma função de primeiro grau crescente, S(t) é uma função quadrática e a aceleração é variável. Está correto apenas o que se afirma em: Correta Ocultar outras opções 1. II e III. 2. I, II e III. 3. I, II e IV. 4. II e IV. 5. III e IV. 5. Pergunta 5 /1 Funções transcendentes são definidas por conta de sua condição de independência algébrica. Elas são funções que não podem ser construídas somente com um número finito de operações algébricas usuais. Considerando essas informações e seus conhecimentos acerca de funções transcendentes, analise as afirmativas a seguir: I. f(x) = c^(x) não é uma função transcendente, onde c é uma constante diferente de 0 e 1. II. f(x)= x^(x) não é uma função transcendente. III. f(x) = x² + 2x + 3 não é uma função transcendente. IV. f(x) = 3 não é uma função transcendente. Está correto apenas o que se afirma em: Correta Ocultar outras opções 1. I, III e IV. 2. II e III. 3. I e IV. 4. II, III e IV. 5. III e IV. 6. Pergunta 6 /1 O estudo acerca dos logaritmos contribui para a resolução de alguns problemas matemáticos que seriam difíceis de se resolver de outra forma, como é o caso da derivada de 2^x. Para isso, é necessário que se tenha o conhecimento básico sobre a definição e propriedades dos logaritmos. Com base nessas informações e em seus conhecimentos sobre os logaritmos, analise as afirmativas a seguir com relação à veracidade e assinale V para a(s) verdadeira(s) e F para a(s) falsa(s). I. ( ) log(e) = ln(e). II. ( ) O número de Euler, base do logaritmo neperiano, é definido a partir de um limite fundamental. III. ( ) A função exponencial é a função inversa da logarítmica IV. ( ) A base de um logaritmo deve ser, somente maior do que zero Agora, assinale a alternativa que representa a sequência correta: Incorreta Ocultar outras opções 1. V, V, V, F. errei essa questão 2. V, F, F, V. 3. F, F, V, V. 4. V, V, F, V. 5. F, V, V, F. acho ser a certa 7. Pergunta 7 /1 Tendo o conhecimento de funções compostas, sabemos que o domínio de algumas funções são a imagem de outras, ou seja, uma função composta H(x) pode ser dada por H(x) = f(g(x)). Muitas funções desse tipo são transcendentes, o que significa que não possuem formulação algébrica. Dado que se f(x) = sen(x), f’(x) = cos(x), e considerando seus conhecimentos sobre a regra da cadeia para derivação de funções compostas, analise as afirmativas a seguir. I. A derivada de f(x) = (x+2)² é 2x + 4. II. A função H(x) = f(g(x)), onde f(x) = sen(x) e g(x) = x²+x, tem derivada H’(x) = (2x+1)*cos (x²+x). III. Para derivar funções transcendentes basta aplicar as regras para derivadas de funções polinomiais. IV. A derivada de f(f(x)) é igual a cos²(x)sen(x). Está correto apenas o que se afirma em: Correta Ocultar outras opções 1. I, II e IV. 2. I e III. 3. II, e IV. 4. I, III e IV. 5. I e II. 8. Pergunta 8 /1 Os logaritmos auxiliam, entre outras coisas, na resolução de equações exponenciais de uma maneira geral. Compreender algumas equivalências logarítmicas é extremamente útil para o processo de manipulação desses elementos matemáticos a fim de resolver tais equações. De acordo com essas informações e os conteúdos estudados sobre as manipulações logarítmicas possíveis, analise as afirmativas a seguir com relação à veracidade das equivalências e assinale V para a(s) verdadeira(s) e F para a(s) falsa(s). I. ( ) log (27) = 3 log (3). II. ( ) log(12) = log (3) + log(4). III. ( ) 2log(2) = log(4). IV. ( ) log(10) = 2log(100) – log(10). Agora, assinale a alternativa que apresenta a sequência correta: Correta Ocultar outras opções 1. V, F, V, F. 2. V, V, V, F. 3. F, V, F, V. 4. V, V, F, F. 5. F, F, V, V. 9. Pergunta 9 /1 Os limites fundamentais delimitam as bases do cálculo integral. Por isso, compreendê-los é compreender como se constituem os alicerces matemáticos que dão origem às derivadas e integrais. Considerando essas informações e seus conhecimentos acerca dos limites fundamentais, analise as afirmativas a seguir: I. é um limite fundamental. II. e são equivalentes. III. IV. Está correto apenas o que se afirma em: Incorreta Ocultar outras opções 1. II, III e IV. 2. I, II, III e IV. Essa opção é errada marque outra 3. I, II e III. 4. II e IV. 5. III e IV. 10. Pergunta 10 /1 Algumas funções representam com precisão fenômenos físicos e químicos. Elas muitas vezes servem de modelo preditivo para a avaliação de uma determinada situação, tal como a que segue: Em um determinado país, há um surto epidêmico. Os centros de pesquisas epidemiológicos daquele país tentam mensurar a velocidade na qualas pessoas são acometidas pelo vírus, e estimam isso pela função horária f(t)=105t-t^2 calculada em dias. Às vésperas de sediar um evento esportivo muito importante, o governo desse país se preocupa com a taxa de contaminação quando o evento começar, pois pode haver o risco de uma pandemia. Imagine que o evento começa em 50 dias, e os centros epidemiológicos alertaram que uma taxa de variação instantânea aceitável é numericamente menor ou igual a 5. Considerando essas informações e os conteúdos estudados sobre derivada da função exponencial, logarítmica e geral, pode-se afirmar que o país deveria sediar o evento, porque: Incorreta Não respondir o computador reiniciou. 1. o número de doentes será 0. 2. a taxa de variação instantânea a 50 dias do tempo presente será 0. 3. a taxa de variação instantânea após 50 dias será maior do que 5. 4. a taxa de variação instantânea após 50 dias será menor do que 5. 5. a taxa de variação instantânea após 50 dias será numericamente igual a 5.