Logo Passei Direto
Buscar
Quando de um problema físico, cuja solução numérica gostaríamos de conhecer, ou de pelo menos encontrar uma aproximação apropriada para este, nos utilizamos de um processo matemático.
Que processo é esse?
A Cálculo Numérico.
B Equações Diferenciais.
C Cálculos Diferenciais.
D Métodos Analíticos.
User badge image
Aprendendo com Desafios

há 6 meses

prova 02
7 pág.

Uniasselvi

Respostas

User badge image

Ed Verified user icon

há 6 meses

Para resolver um problema físico e encontrar uma solução numérica ou uma aproximação, o processo matemático mais adequado é o Cálculo Numérico. Essa área da matemática se dedica a desenvolver métodos que permitem obter soluções aproximadas para problemas que, muitas vezes, não podem ser resolvidos de forma exata. Analisando as alternativas: A) Cálculo Numérico - Correto, pois é a área que se ocupa de encontrar soluções numéricas para problemas matemáticos. B) Equações Diferenciais - Embora sejam importantes, elas são frequentemente parte do problema a ser resolvido, mas não representam o processo de encontrar uma solução numérica. C) Cálculos Diferenciais - Refere-se a uma parte do cálculo, mas não é o processo específico para resolver problemas numéricos. D) Métodos Analíticos - Esses métodos buscam soluções exatas, não necessariamente numéricas. Portanto, a alternativa correta é: A) Cálculo Numérico.

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

prova 02
7 pág.

Uniasselvi

Mais perguntas desse material

Com base nos Erros de Modelagem, analise as sentenças a seguir:
I- Consideremos uma função real contínua f definida sobre um intervalo [a,b] e suponhamos que precisássemos calcular a área delimitada por ela no plano cartesiano. Vimos em Cálculo que a maneira mais precisa de fazer isso é calculando a integral da função f no intervalo [a,b]; esse é o modelo matemático mais apropriado. II- Se precisarmos de uma aproximação ainda melhor, podemos considerar, ao invés da soma das áreas dos retângulos, a soma de área dos trapézios de altura n e bases f(x j) e f(x j+1 ), com 1 ≤ j ≤ n - 1. III- Outro fator que interfere na precisão do modelo matemático adotado é a viabilidade de se considerar todos os fatores que podem interferir no problema – raramente conseguimos representar um problema físico completamente. Assinale a alternativa CORRETA:
I- Consideremos uma função real contínua f definida sobre um intervalo [a,b] e suponhamos que precisássemos calcular a área delimitada por ela no plano cartesiano. Vimos em Cálculo que a maneira mais precisa de fazer isso é calculando a integral da função f no intervalo [a,b]; esse é o modelo matemático mais apropriado.
II- Se precisarmos de uma aproximação ainda melhor, podemos considerar, ao invés da soma das áreas dos retângulos, a soma de área dos trapézios de altura n e bases f(x j) e f(x j+1 ), com 1 ≤ j ≤ n - 1.
III- Outro fator que interfere na precisão do modelo matemático adotado é a viabilidade de se considerar todos os fatores que podem interferir no problema – raramente conseguimos representar um problema físico completamente.
A Somente a sentença III está correta.
B Somente a sentença II está correta.
C As sentenças I, II e III estão corretas.
D Somente a sentença I está correta.

No dia a dia nos deparamos com vários problemas físicos cuja solução numérica gostaríamos de conhecer ou de, pelo menos, encontrar uma aproximação apropriada para ela. O esquema a seguir nos mostra, de uma maneira simples, como se dá esse processo:
Com base no exposto, analise as sentenças a seguir: I- Qualquer processo de Cálculo Numérico é desenvolvido deste modo, seja na Física, nas engenharias ou em qualquer outra área de aplicação. II- Podemos esperar que, uma vez encontrado o modelo matemático correto, os resultados obtidos sejam iguais aos esperados. III- O Cálculo Numérico surge quando uma resolução analítica torna-se inviável. IV- Na verdade, os resultados obtidos são, muitas vezes, bastante diferentes dos esperados, mesmo que todas as etapas da resolução tenham sido aplicadas corretamente. Assinale a alternativa CORRETA:
I- Qualquer processo de Cálculo Numérico é desenvolvido deste modo, seja na Física, nas engenharias ou em qualquer outra área de aplicação.
II- Podemos esperar que, uma vez encontrado o modelo matemático correto, os resultados obtidos sejam iguais aos esperados.
III- O Cálculo Numérico surge quando uma resolução analítica torna-se inviável.
IV- Na verdade, os resultados obtidos são, muitas vezes, bastante diferentes dos esperados, mesmo que todas as etapas da resolução tenham sido aplicadas corretamente.
A Somente a sentença II está correta.
B Somente a sentença I está correta.
C As sentenças I, II, III e IV estão corretas.
D Somente a sentença III está correta.

Mais conteúdos dessa disciplina