Logo Passei Direto
Buscar
Conversão de base numérica é a passagem da representação de um número de uma base numérica para outra, alterando a simbologia para se adequar à nova base. A base que normalmente usamos é a decimal ou base dez, pois contém dez algarismos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Por exemplo, o número inteiro representado em base decimal como 10, pode ser escrito como '1010'.
Sobre a representação do número decimal 1,625 na forma binária, assinale a alternativa CORRETA:
A 1,101.
B 1,010.
C 1,110.
D 1,001.
User badge image
Aprendendo com Desafios

há 6 meses

prova 02
7 pág.

Uniasselvi

Respostas

User badge image

Ed Verified user icon

há 6 meses

Para converter o número decimal 1,625 para a forma binária, precisamos separar a parte inteira (1) da parte fracionária (0,625). 1. Parte inteira: O número 1 em decimal é 1 em binário. 2. Parte fracionária: Para converter 0,625 para binário, multiplicamos por 2: - 0,625 × 2 = 1,25 → a parte inteira é 1. - 0,25 × 2 = 0,5 → a parte inteira é 0. - 0,5 × 2 = 1,0 → a parte inteira é 1. Agora, juntamos os resultados: - A parte inteira é 1. - A parte fracionária é 0,101 (juntando os inteiros obtidos). Portanto, a representação binária de 1,625 é 1,101. Analisando as alternativas: A) 1,101 - Correta. B) 1,010 - Incorreta. C) 1,110 - Incorreta. D) 1,001 - Incorreta. A alternativa correta é: A 1,101.

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

prova 02
7 pág.

Uniasselvi

Mais perguntas desse material

Com base nos Erros de Modelagem, analise as sentenças a seguir:
I- Consideremos uma função real contínua f definida sobre um intervalo [a,b] e suponhamos que precisássemos calcular a área delimitada por ela no plano cartesiano. Vimos em Cálculo que a maneira mais precisa de fazer isso é calculando a integral da função f no intervalo [a,b]; esse é o modelo matemático mais apropriado. II- Se precisarmos de uma aproximação ainda melhor, podemos considerar, ao invés da soma das áreas dos retângulos, a soma de área dos trapézios de altura n e bases f(x j) e f(x j+1 ), com 1 ≤ j ≤ n - 1. III- Outro fator que interfere na precisão do modelo matemático adotado é a viabilidade de se considerar todos os fatores que podem interferir no problema – raramente conseguimos representar um problema físico completamente. Assinale a alternativa CORRETA:
I- Consideremos uma função real contínua f definida sobre um intervalo [a,b] e suponhamos que precisássemos calcular a área delimitada por ela no plano cartesiano. Vimos em Cálculo que a maneira mais precisa de fazer isso é calculando a integral da função f no intervalo [a,b]; esse é o modelo matemático mais apropriado.
II- Se precisarmos de uma aproximação ainda melhor, podemos considerar, ao invés da soma das áreas dos retângulos, a soma de área dos trapézios de altura n e bases f(x j) e f(x j+1 ), com 1 ≤ j ≤ n - 1.
III- Outro fator que interfere na precisão do modelo matemático adotado é a viabilidade de se considerar todos os fatores que podem interferir no problema – raramente conseguimos representar um problema físico completamente.
A Somente a sentença III está correta.
B Somente a sentença II está correta.
C As sentenças I, II e III estão corretas.
D Somente a sentença I está correta.

No dia a dia nos deparamos com vários problemas físicos cuja solução numérica gostaríamos de conhecer ou de, pelo menos, encontrar uma aproximação apropriada para ela. O esquema a seguir nos mostra, de uma maneira simples, como se dá esse processo:
Com base no exposto, analise as sentenças a seguir: I- Qualquer processo de Cálculo Numérico é desenvolvido deste modo, seja na Física, nas engenharias ou em qualquer outra área de aplicação. II- Podemos esperar que, uma vez encontrado o modelo matemático correto, os resultados obtidos sejam iguais aos esperados. III- O Cálculo Numérico surge quando uma resolução analítica torna-se inviável. IV- Na verdade, os resultados obtidos são, muitas vezes, bastante diferentes dos esperados, mesmo que todas as etapas da resolução tenham sido aplicadas corretamente. Assinale a alternativa CORRETA:
I- Qualquer processo de Cálculo Numérico é desenvolvido deste modo, seja na Física, nas engenharias ou em qualquer outra área de aplicação.
II- Podemos esperar que, uma vez encontrado o modelo matemático correto, os resultados obtidos sejam iguais aos esperados.
III- O Cálculo Numérico surge quando uma resolução analítica torna-se inviável.
IV- Na verdade, os resultados obtidos são, muitas vezes, bastante diferentes dos esperados, mesmo que todas as etapas da resolução tenham sido aplicadas corretamente.
A Somente a sentença II está correta.
B Somente a sentença I está correta.
C As sentenças I, II, III e IV estão corretas.
D Somente a sentença III está correta.

Mais conteúdos dessa disciplina