Prévia do material em texto
Prova Impressa GABARITO | Avaliação II - Individual (Cod.:1020330) Peso da Avaliação 2,00 Prova 94450362 Qtd. de Questões 10 Acertos/Erros 10/0 Nota 10,00 Uma equação não linear é uma equação que contenha termos da forma x², x³, termos com raiz entre outros. Um sistema de equações é dito não linear se pelo menos uma das equações não é linear. Para resolver um sistema não linear, usamos processos interativos. Considere o sistema linear: f(x,y)=0 g(x,y)=0 onde, f ou g são funções não lineares. Com relação aos processos interativos usados para encontrar a solução dos sistemas não lineares, analise as sentenças a seguir: I- Para aplicar o método da Interação Linear, precisamos encontrar as funções F e G (chamadas de funções de interação) que satisfazem F(x,y) = x e G(x,y) = y de tal forma que sejam contínuas e suas derivadas parciais também são contínuas. II- Para aplicar o método de Newton, temos que considerar que f e g sejam contínuas, mas não é necessário que suas derivadas primeiras e segundas sejam também contínuas. III- Para o método de Interação Linear, podemos considerar qualquer ponto inicial (x0, y0), não é preciso estar próximo da solução. IV- Para o método de Newton, temos que considerar o ponto inicial (x0, y0) próximo da solução. Assinale a alternativa CORRETA: A As sentenças II e IV estão corretas. B As sentenças II e III estão corretas. C As sentenças I e III estão corretas. D As sentenças I e IV estão corretas. Funções polinomiais são um caso particular de funções, em geral são bem-comportadas e apresentam várias propriedades interessantes. Uma dessas propriedades é que todo polinômio possui pelo menos uma raiz, podendo ela ser real ou complexa e se o polinômio tem grau n então ele tem no máximo n raízes. E ainda, se todos os coeficientes do polinômio forem reais e ele tiver uma raiz complexa, então o conjugado dessa raiz também é uma raiz do polinômio. Com base no exposto, considere o polinômio p(x) = x³ - 3x² + x + 5 Determine o valor de a sabendo que x = - 1 e x = a - i são raízes do polinômio. A a = - 1 B a = 0 C a = - 2 VOLTAR A+ Alterar modo de visualização 1 2 17/03/2025, 23:10 Avaliação II - Individual about:blank 1/5 D a = 2 As expressões algébricas que se formam a partir da união de duas ou mais variáveis e constantes, relacionadas através de operações de multiplicação, subtração ou adição, recebem o nome de polinômios. Dado o polinômio P (x) = 0,5x² + 2x + 1, determine o seu valor para x igual a 0,5. Com base no exposto, assinale a alternativa CORRETA: A O valor do polinômio é 2,5. B O valor do polinômio é 2,125. C O valor do polinômio é 2,75. D O valor do polinômio é 1,125. Os métodos de Jacobi e Gauss-Seidel são métodos que encontram uma solução aproximada da solução de um sistema linear. Quando não temos mais um sistema linear e sim um sistema não linear devemos fazer uso de outros métodos para encontrar uma solução aproximada para o sistema, dois deles são: o método da interação linear e o método de Newton. O método da interação linear em geral é mais fácil de ser implementado, porém requer mais condições do sistema que o método de Newton. Assinale a alternativa CORRETA que apresenta a solução (com um arredondamento de 3 casas decimais) do sistema não linear depois de duas iterações (k = 2) e o ponto inicial (0; - 0,5) usando o método da iteração linear: A x = 0,495 e y = 0,124 B x = 0 e y = - 0,5 C x = 0,125 e y = - 0,492 D x = 0,125 e y = - 0,5 Funções polinomiais são um caso particular de funções, em geral são bem-comportadas e apresentam várias propriedades interessantes. Uma dessas propriedades é que todo polinômio possui pelo menos uma raiz, podendo ela ser real ou complexa e se o polinômio tem grau n então ele tem no máximo n raízes. E, ainda, se todos os coeficientes do polinômio forem reais e ele tiver uma raiz complexa, então o conjugado dessa raiz também é uma raiz do polinômio. Com base no exposto, considere o polinômio: Assinale a alternativa CORRETA: 3 4 5 17/03/2025, 23:10 Avaliação II - Individual about:blank 2/5 A a = 0 B a = 2 C a = - 2 D a = - 1 Consideremos uma função f e um intervalo [a, b] para o qual f é contínua em todos os pontos do intervalo e f(a)·f(b) 0, o critério de parada seja satisfeito? Assinale a alternativa CORRETA: A Método da bissecção. B Método da ordem de convergências. C Método da Gauss. D Método simples. Ao estudar matemática financeira, o professor de Luiz comentou que para determinar o prazo em um financiamento no sistema Price é necessário utilizar um método numérico. O professor de Luiz passou o seguinte problema: suponha que um financiamento no sistema Price no valor de R$ 20.000,00 está aplicado a uma taxa de 2% ao mês e o valor de cada parcela seja de R$ 609,05, determine o prazo desse financiamento. Luiz, lembrando o que seu professor falou em sala, resolveu usar o Método da Bissecção para encontrar o prazo. Luiz fez as seguintes anotações: A 6 7 17/03/2025, 23:10 Avaliação II - Individual about:blank 3/5 53,75 e 54,375. B 53,75 e 54,0625. C 52,5 e 53,75. D 55 e 52,5. Os métodos de Jacobi e Gauss-Seidel são métodos que encontram uma solução aproximada da solução de um sistema linear. Quando não se tem mais um sistema linear, e sim um sistema não linear, devemos fazer uso de outros métodos para encontrar uma solução aproximada para o sistema, sendo dois deles o método da interação linear e o método de Newton. O método da interação linear, em geral, é mais fácil de ser implementado, porém requer mais condições do sistema que o método de Newton. Com base no exposto, assinale a alternativa CORRETA que apresenta a solução (com um arredondamento de 3 casas decimais) do sistema não linear depois de duas iterações (k = 2) e o ponto inicial (0,5; 0,1) usando o método da iteração linear: A x = 0,5 e y = 0,1. B x = 0,492 e y = 0,123. C x = 0,505 e y = 0,125. D x = 0,495 e y = 0,125. Funções polinomiais são um caso particular de funções, em geral são bem-comportadas e apresentam várias propriedades interessantes. Uma dessas propriedades é que todo polinômio possui pelo menos uma raiz, podendo ela ser real ou complexa e se o polinômio tem grau n então ele tem no máximo n raízes. E ainda, se todos os coeficientes do polinômio forem reais e ele tiver uma raiz complexa então o conjugado dessa raiz também é uma raiz do polinômio. Com base no exposto, considere o polinômio p(x) = x³ + 2x² + x + 2. Determine o valor de a sabendo que x = - 2 e x = a - i são raízes do polinômio. Assinale a alternativa CORRETA: A a = - 1 B a = - 2 C a = 2 D a = 0 8 9 17/03/2025, 23:10 Avaliação II - Individual about:blank 4/5 No universo da Matemática, tudo que estudamos tem uma razão e aplicabilidade. Da teoria à prática, os logaritmos são trabalhados em diversas áreas do conhecimento. O trabalho com uma função logarítmica tem como objetivo facilitar os cálculos, bem como ampliar os conhecimentos em assuntos específicos, como: a) na Química, quando o trabalho envolve radioatividade, para determinar o tempo de desintegração de uma substância radioativa é utilizada a fórmula: Q=qo.e^(-r-t). Nesta fórmula, Q representa a massa da substância, qº a massa inicial, r a taxa de redução da radioatividade e a variável t o tempo. Equações com essa tipologia podem ser resolvidas com o auxílio da teoria dos logaritmos; b) no ano de 1935, os sismólogos Charles Francis Richter e Beno Gutenberg desenvolveram uma escala para quantificar o nível de energia liberada por um sismo. A escala Richter, que também é conhecida por escala de magnitude local, é uma função logarítmica. Assim, é possível quantificar em Joules a quantidade de energia liberada por um movimento tectônico; c) na Medicina, quando é ministrado um tratamento, o paciente recebe o medicamento, que entra na corrente sanguínea, que passa por órgãos como fígado e rins.Neste caso, é possível obter o tempo necessário para que a quantidade desse medicamento presente no corpo do paciente seja menor ou maior que uma determinada quantidade, e para isso é necessário trabalhar com uma equação logarítmica. Neste contexto, trabalhando com uma margem de erro menor ou igual a (0,1), calcule o valor aproximado da função: f(x) = x.log(x+1) - 2, sabendo que a função tem apenas uma raiz real, que está contida no intervalo. A A função tem sua raiz real em 3,2. B A função tem sua raiz real em 3,3. C A função tem sua raiz real em 3,5. D A função tem sua raiz real em 3,25. 10 Imprimir 17/03/2025, 23:10 Avaliação II - Individual about:blank 5/5