Prévia do material em texto
TRANSFORMADA DE FOURIER – FUNÇÕES CLÁSSICAS )(tx )( fX Obs: )(tret )(sinc t )(ttri )(sinc2 t )(tue ta− ifa pi2 1 + 0>a )(tue tz− ifz pi2 1 + 0)Re( >z || ta e − 222 4 2 fa a pi+ 0>a )sgn(|| te ta− 222 4 4 fa if pi pi + − 0>a )(tute at− 2)2( 1 ifa pi+ 0>a |||| taet − 2222 222 )4( 42 fa fa pi pi + − 0>a || tate− 2222 )4( 8 fa iaf pi pi + − 0>a 2ate− 22 f a a e pi pi − 0>a 2atte− 222/3 f af a i e pi pi − − 0>a TRANSFORMADA DE FOURIER – FUNÇÕES GENERALIZADAS )(tδ 1 )sgn(t ifpi 1 )(tu ( )f if δpi 2 1 2 1 + iate ( )piδ 2af − Ra ∈ )cos(at ( ) ( )pipi δδ 221221 aa ff ++− Ra ∈ )(sen at ( ) ( )pipi δδ 221221 aa ff ii +−− Ra ∈ )sgn(teiat fa i pi2 2 − Ra ∈ )(tueiat ( ) fa if a pi δ pi 22 1 2 − +− Ra ∈ ||tia e 2222 22 4 2 4 fa aif a pi δ pi − + − Ra ∈ 2iate− ai f e ai 22pi pi − 0≠a t ( )fi δ pi ′ 2 nt ( )fi n n )( 2 δ pi || t 222 1 fpi− TRANSFORMADAS DE FUNÇÕES RACIONAIS t 1 )sgn( fipi− 2 1 t ||2 2 fpi− at + 1 )sgn(2 fi iafe pipi− Ra ∈ ibt + 1 )(2 2 fui bfe pipi −− 0>b ibt − 1 )(2 2 fui bfe −pipi 0>b zt + 1 )(2 2 fui izfe pipi− 0)Im( >z zt + 1 )(2 2 fui izfe −pipi 0)Im( <z 22 1 at + ||2 fa e a pipi − 0>a 22 1 at − ( )||2sen fa a pi pi − 0>a TRANSFORMADAS DE SINAIS MODULADOS )cos()( attx ( ) ( )pipi 221221 aa fXfX ++− Ra ∈ )(sen)( attx ( ) ( )pipi 221221 aa fXfX ii +−− Ra ∈ )cos()sgn( att 222 4 4 fa if pi pi − Ra ∈ )(sen)sgn( att 222 4 2 fa a pi− Ra ∈ )()cos( tutbe at− 22)2( 2 bifa ifa ++ + pi pi Rba ∈> ,0 )()(sen tutbe at− 22)2( bifa b ++ pi Rba ∈> ,0 t at)(cos ( ) ( )[ ]afuafu a i −−−− pipi pi 22 0 , ≠∈ aRa t at)(sen )/( afret pipi ⋅ 0 , ≠∈ aRa MISCELÂNEA DE TRANSFORMADAS DE FOURIER )(sinc2 tt )()sgn( 2 1 trett ipi )()sgn( trett )(sinc2 2 ffipi− )arctan(t if e f 2 ||2pi− t e t ||− )2arctan(4 fi pipi− )2cos( θpi +tfc [ ])()(21 cici ffeffe ++− − δδ θθ RRfc ∈∈ θ , )(trete Tiat ( )[ ]pi2sinc afTT − Ra ∈ )(|| trete Tta− ( ) )4( )cos(2sen4 4 2 222222 2/ fae TfaTff fa a aT pi pipipi pi + − + + 0 ,0 >> Ta 22 atet − 22 2 2 2/5 2 f afa a e pi pi pi − − 0>a