Ed
ano passado
Para simplificar a expressão algébrica \( 4(2x-1) - 3(x+1) + 2x(2x-1) \), vamos seguir os passos: 1. Distribuir os termos: \[ 4(2x-1) = 8x - 4 \] \[ -3(x+1) = -3x - 3 \] \[ 2x(2x-1) = 4x^2 - 2x \] 2. Substituir na expressão original: \[ 8x - 4 - 3x - 3 + 4x^2 - 2x \] 3. Agrupar os termos semelhantes: - Os termos com \(x^2\): \(4x^2\) - Os termos com \(x\): \(8x - 3x - 2x = 3x\) - Os termos constantes: \(-4 - 3 = -7\) 4. Escrever a expressão simplificada: \[ 4x^2 + 3x - 7 \] Portanto, a forma mais simplificada da expressão algébrica é: \[ \boxed{4x^2 + 3x - 7} \]
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade