Logo Passei Direto
Buscar
Determine a integral indefinida integral sin squared invisible function application left parenthesis x right parenthesis cos invisible function application left parenthesis x right parenthesis d x. a. integral sin squared invisible function application left parenthesis x right parenthesis cos invisible function application left parenthesis x right parenthesis d x equals fraction numerator sin cubed invisible function application left parenthesis x right parenthesis over denominator 3 end fraction b. integral sin squared invisible function application left parenthesis x right parenthesis cos invisible function application left parenthesis x right parenthesis d x equals sin cubed invisible function application left parenthesis x right parenthesis c. integral sin squared invisible function application left parenthesis x right parenthesis cos invisible function application left parenthesis x right parenthesis d x equals 3 sin cubed invisible function application left parenthesis x right parenthesis d. integral sin squared invisible function application left parenthesis x right parenthesis cos invisible function application left parenthesis x right parenthesis d x equals 1 half x sin invisible function application left parenthesis x right parenthesis minus 1 fourth sin invisible function application left parenthesis x right parenthesis sin invisible function application left parenthesis 2 x right parenthesis e. integral sin squared invisible function application left parenthesis x right parenthesis cos invisible function application left parenthesis x right parenthesis d x equals 2 sin invisible function application left parenthesis x right parenthesis cos squared invisible function application left parenthesis x right parenthesis minus sin cubed invisible function application left parenthesis x right parenthesis
User badge image
Ronaldo Urbano

ano passado

Respostas

User badge image

Ed Verified user icon

ano passado

Para resolver a integral indefinida \(\int \sin^2(x) \cos(x) \, dx\), podemos usar a substituição. Vamos definir \(u = \sin(x)\), então \(du = \cos(x) \, dx\). Assim, a integral se transforma em: \[ \int \sin^2(x) \cos(x) \, dx = \int u^2 \, du \] A integral de \(u^2\) é: \[ \frac{u^3}{3} + C \] Substituindo \(u\) de volta, temos: \[ \frac{\sin^3(x)}{3} + C \] Agora, vamos analisar as alternativas: a) \(\int \sin^2(x) \cos(x) \, dx = \frac{\sin^3(x)}{3}\) - Correto! b) \(\int \sin^2(x) \cos(x) \, dx = \sin^3(x)\) - Incorreto. c) \(\int \sin^2(x) \cos(x) \, dx = 3 \sin^3(x)\) - Incorreto. d) \(\int \sin^2(x) \cos(x) \, dx = \frac{1}{2} x \sin(x) - \frac{1}{4} \sin(x) \sin(2x)\) - Incorreto. e) \(\int \sin^2(x) \cos(x) \, dx = 2 \sin(x) \cos^2(x) - \sin^3(x)\) - Incorreto. Portanto, a alternativa correta é a) \(\frac{\sin^3(x)}{3}\).

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Mais conteúdos dessa disciplina